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Abstract Facial recognition has been one of the most intriguing and exciting research to-
pics over the last few years. It involves multiple face-based algorithms such as
facial detection, facial alignment, facial representation, and facial recognition.
However, all of these algorithms are derived from large deep-learning architectu-
res, leading to limitations in development, scalability, accuracy, and deployment
for public use with mere CPU servers. Also, large data sets that contain hun-
dreds of thousands of records are often required for training purposes. In this
paper, we propose a complete pipeline for an effective face-recognition applica-
tion that requires only a small data set of Vietnamese celebrities and a CPU for
training, solving the problem of data leakage, and the need for GPU devices.
The pipeline is based on the combination of a conversion algorithm from face
vectors to string tokens and the indexing & retrieval process by Elasticsearch,
thereby tackling the problem of online learning in facial recognition. Compared
with other popular algorithms on the same data set, our proposed pipeline not
only outperforms the counterpart in terms of accuracy but also delivers faster
inference, which is essential to real-time applications.
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1. Introduction

1.1. Overview

Thanks to the rapid development of technology, facial-recognition systems are beco-
ming more and more robust. Many companies all over the world are paying great
attention to and investing in facial recognition technology for their authentication
systems instead of using traditional verification methods such as fingerprints or irises.
Moreover, the applications of the technology in every aspect of life are diverse [29,39],
such as security [28], the Internet of Things and mobile systems [3], real-time identifi-
cation systems [6], biometric systems based on motion detection and facial features [1].

Figure 1. Overview of full pipeline for face-recognition applications

It is no wonder that an end-to-end pipeline for facial-recognition applications is
comprised of complex underlying algorithms: the extraction of frontal human faces
from given images (called face detection [14, 23, 25, 51]), the alignment (optional)
of face positions [48], face representation in the form of numeric vectors [15, 44],
and distinguishing faces [47] based on the representative vectors from the previous
step [40]. A critical review of these algorithms is listed below:

• Since the 2000s, face detection has had a lot of different approaches; however,
they have all been inadequate in terms of their accuracy and/or speed. A big
innovation came in 2001 when Viola and Jones invented the Haar-based cascade
classifier [42], which was continuously improved in 2002 by Lienhart and Maydt
[24]. As a result, the algorithm became faster and could be run in real-time with
95% accuracy on a challenging data set. By 2010, face recognition had reached
state-of-the-art accuracy with the explosion of deep learning [10,37].
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• Attaining facial-feature vectors after performing face detection is greatly essential
to the recognition step. Algorithms [9,34] are examples of conversions from images
of cropped faces to vectors of specified dimensions to denote the most crucial
facial characteristics.

• For identity recognition, some approaches have become well-known, such as those
that are based on a deep-learning architecture (like [2, 8, 34]), with the concept
of sparse representation [47], basing on clustering [35], or cosine loss (proposed
by Hao Wang in [43]).

A common full pipeline of facial recognition would be referred to in Figure 1.

1.2. Challenging issues

All of the algorithms mentioned above have proven their strength and made signi-
ficant contributions to the research area of face-recognition applications; however,
there are still some issues that need to be worked out. First of all, it can be easily
seen that most of these methods only make up one part of the full pipeline. Second,
the adoption of deep models demonstrates more-impressive accuracy than the other
approaches, but these models need to be trained on an extremely large and diverse
data set with a size of up to millions of images; hence, they seem to be too slow for
the development, deployment, and management of applications (which comes at the
expense of high-priced physical devices). As a result, the increasing demand for GPU
servers for training and deployment has been even more ubiquitous than ever. Ano-
ther shortcoming is that the existing online learning problem [32] makes these models
subject to the requirement of periodic training in order to maintain a system’s accu-
racy whenever new faces are added. Furthermore, there has been a very little body
of research conducted on the topic of complete pipelines for face recognition, which
totally deserves more attention.

1.3. Our contributions

Our contributions are summarized as follows:

1. With all of the drawbacks discussed above, we have proposed a new approach to
an end-to-end facial-recognition application in this paper in the form of a com-
plete pipeline that consists of development, deployment, and model version ma-
nagement.

2. As compared to other well-known methods, our pipeline acquires an impressive
prediction accuracy with a very challenging data set, which is becoming essential
amid all of the difficulties that are faced during the collection of face data. The
pipeline is also able to bring out a very quick response time, making it practicable
in real-time applications.

3. Moreover, the cost for the necessary physical devices is reduced exponentially by
applying a vector-to-string token algorithm so we can train and release the model
directly on CPU servers.
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4. Instead of using a deep-learning model for identifying faces, Elasticsearch (ES)
is leveraged for storing, creating, and retrieving a face identity; thus, the online
learning problems in face-recognition apps are also tackled.

1.4. Roadmap

The rest of the paper is organized as follows. Section 2 presents reviews of related
works. Some data pre-processing and re-balancing methods are shown in Section 3.
Section 4 discusses the proposed methods of facial-recognition systems, and experi-
mental results are presented in Section 5. Finally, our conclusions and future works
are in Section 6.

2. Related works

2.1. Face detection

Face detectionThis means that determining the location and size of a human face
in a digital image is a fundamental step for many face-related technologies. There
are a variety of face-based algorithms that take face detection as the foundation for
acquiring adequate accuracy, such as face verification [9], face recognition [49], and
face anti-spoofing [22]. So, the purpose of a face-detection algorithm is to improve
the accuracy of these algorithm by eliciting only frontal faces as the algorithm’s in-
puts. To date, some adaptations of deep-learning architectures that use the concept
of a convolutional neural network (CNN) for this step (like MTCNN [51], Cascade
CNN [23], R-CNN [14], SSD [25], etc.) have achieved remarkable progress.

2.2. Face representation

Face representation (in other words, facial-features extraction) is the process of en-
coding raw facial images into a continuous vector representation in high-dimensional
feature space [44]. Traditionally, facial features were extracted manually by design
patterns such as edges, lines, a four-rectangle features in Viola Jones’s algorithm [41]
or grids of histograms of oriented gradient (HOG) descriptors [7].

Modernly, statistical facial-feature extraction has been performed automatically
and more efficiently (in terms of both time and feature quality [44]) through convo-
lutional neural networks (CNN), a class of deep neural networks [15]. Allowing for
spatial feature preservation, CNNs are suitable for learning feature embeddings for
a 2-D topology data type, including images and facial pictures [15]. Using facial em-
beddings that are learned by CNNs out-performs most traditional methods in several
downstream tasks, including face recognition and face verification [44].

2.3. Principal component analysis

PCA (principal component analysis) [30] is a dimensionality-reduction technique that
was created in 1901 by Karl Pearson. This method makes use of the recognition of
statistical design to reduce dimensionality and extract features.
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This approach has been used in various applications since its appearance, such as
handwriting recognition, neuroscience, quantitative finance, and image compression.

2.4. FaceNet architecture in OpenFace

FaceNet [34] was developed in 2015 by Google researchers for the face-recognition
task. Essentially, a CNN is responsible for extracting the features of a face image.
The CNN training was performed on large data sets (vggface, MS-Celeb-1M). The
key feature of FaceNet is that it uses the triplet loss function to minimize the distances
between similar faces and maximize the distances between dissimilar faces:

loss(A,P,N) = max(∥f(A) − f(P)∥2 − ∥f(A) − f(N)∥2 + α, 0)

where A is anchor input, P is a positive input, N is a negative input, and α is the
margin between positive and negative pairs.

3. Data set

Our proposed model is implemented on the VN-Celeb1 data set that consists of images
of Vietnamese celebrities that were collected from the Viet Nam Wikipedia website2.

The data set contains 24,125 images that belong to 1020 famous Vietnamese
people (1020 classes). More specifically, the average number of images per class is
around 23; 7 classes have only 2 shots, and the class with the most images has up to
105. It can be said that the data set is very challenging in terms of both size and each
class’ proportion. To elaborate:

• numbers of images of each class fluctuate in a wide range (severely imbalanced
data set);

• size of data set is small as compared to other face-recognition data sets;
• some problems such as lighting conditions, face poses, and picture quality affect

recognition accuracy.
First, the image’s proportion between classes is imbalanced. Table 1 illustrates

the percentage of the classes that are classified by the range of the number of photos.
We can see that the proportions of the classes in two ranges ([2, 5] and [50, 105]) were
only 5 and 3 %, respectively; meanwhile, the classes that belonged to scope [30, 50]
accounted for 27 %. Especially, classes that had [5, 30] elements showed the highest
percentage (65%).

Table 1
Image proportion

No. of image [2, 5) [5, 30) [30, 50) [50, 105]
Percentage 5% 65% 27% 3%

1https://drive.google.com/drive/folders/1I3KXcGpmm6zpw_y07p-7wIKt5K08iOgc
2https://vi.wikipedia.org/
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As one can see in Figure 2, the distribution of the images in each class is extremely
disproportionate, as the numbers of photos stretched widely (from 2 to 105 per class).
Second, the VN-Celeb data set consisted of 24,125 images; on the other hand, the
number of classes was 1020. In other words, this task can be classified as few-shot
learning [45] – generalizing from a few training examples.

Another issue is the variations of data set images in lighting conditions, poses,
and image quality. Many photos show only one part of the face, have the head upside-
down, or show no face. Moreover, there are both grayscale and RGB color photos
included.

Figure 2. Number of images in each class

4. Proposed model

In this section, the proposed pipeline will be described step-by-step, and illustrations
will be provided in order to demonstrate the idea in more detail.

As mentioned in the previous section, the data set was challenging. The size was
only 24.1k images with 1020 classes, which was much smaller and more imbalanced as
compared to other data sets such as FaceNet’s [34] private data set (with 100–200M),
DeepFace [36] (using a private data set with 4.4M images), OpenFace [3] (trained on
combined CASIA-WebFace data set [50] and FaceScrub [27]), and so on. Therefore,
before a data set can be passed into the face-embedding model to obtain representing
vectors for training purposes in the encoding phase, data cleaning, re-balancing, and
some other data pre-processing techniques must be performed. Our proposed pipeline
application is shown in Figure 3.
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Figure 3. Workflow of application

4.1. Face detection

This phase plays an integral role in the accuracy of the whole application, and it is the
foundation for subsequent steps. After carrying out experiments in various tools (Dlib-
ml [21], Haar Cascades [4], MTCCN [51], etc.) to extract faces from the given images,
we decide to take two methods for this phase; these methods are interchangeable
depending on a particular spec.

First, we use SSD [25] with MobileNet as backbone on the wild data set: Labelled
Faces in the Wild (LFW) Datase [19] to take advantage of the fast inference time of the
MobileNet architecture [18]. Another option was to use a pre-trained library (MTCNN
[51]). Although detecting faces with MobileNet-SSD gives a better performance, the
bounding boxes results are not as good as those of its MTCNN counterpart. So,
hinging on the purposes, we can switch between the two methods.
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4.2. Data pre-processing

The data set in which we implement our pipeline was really challenging due to its
size, properties, and proportions of images in each class. Therefore, pre-processing
steps needed to be taken. To mitigate any adverse effects and enhance the system’s
accuracy, we generated more data to classes in which the numbers of images were
below 20 by applying some non-geometric pre-processing techniques. These techniques
are listed below:

• blurring,
• sharpening,
• smoothing,
• histogram equalization,
• gamma correction => DOG filtering => contrast equalization [33].

The data set that was obtained after pre-processing was passed through the next
step in order to obtaining face representation for training in the encoding phase.

4.3. Face embeddings with VGG-Face

At this point, the embedding vectors that contained the most informative facial ele-
ments were represented in the form of numeric arrays that were extracted from a deep
neural network. Based on experiments and evaluations on deep-learning architectu-
res like FaceNet [34], VGG-Face [5], ArcFace [9], etc., VGG-Face was chosen becau-
se of its accuracy and performance running on our framework. The based model is
ResNet50 [16], all fully connected layers were removed so as to convert face images
into numeric representing vectors (which would be used for recognition purposes at
a later stage).

4.4. Reducing face vector dimensions by PCA

The default output of VGG-Face is a 2048-dimensional vector, making it very difficult
for real-time applications to run on a server without a GPU, as the computational
cost is very high and it might hurt the performance of the whole framework otherwi-
se. So, it was time for some data dimension-reduction algorithms to be implemented.
An attempt at training and evaluating a list of array dimensions within a range of
[256, 512, 1024] was conducted through a combination between this phase and the
encoding phase (which will be explained in the next subsection). Finally, after asses-
sing both the accuracy and performance deliberately, we decided to apply PCA [46]
to compress from 2048 to 512 dimensions as the best dimension to represent the
face data.

4.5. Encoding face embeddings to string tokens

In this section, we explain the reason why we decided to change the data-type for
face representation. Actually, it is possible to recognize a person’s identity from facial
embedding vectors that are extracted from VGG-Face by using well-known methods
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such as Euclidean distance, cosine similarity, and a deep-learning classification mo-
del. However, calculating similarity within all high-dimensional facial vectors to find
the most similar is computationally expensive and time-consuming. Besides, another
option of using deep-learning algorithms for this task was proposed, but it had a long
inference time and high latency due to the complexity of the deep-model architectures
for recognition (not to mention inefficiency regarding the online learning problems).
In short, the application was challenging and difficult to put into real-life practice.

Figure 4. Illustration of subvector-wise clustering

In this paper, we utilized an encoding algorithm from [26] to convert numeric face
vectors into collections of string tokens that could be retrieved faster with Elastic-
search, which was beneficial for a real-time application. The encoding algorithm was
inspired by the idea of subvector-wise clustering. More specifically, with any numeric
face vector x ∈ Rd, we divided it into m positions (as below, cf. Fig. 4):

[x1, ..., xd/m, xd/m+1, ..., x2d/m, ......, xd−d/m+1, ..., xd]

Considering m positions as m subvectors = {x1, x2, ..., xm} and P i :=

{xi
1, x

i
2, ..., x

i
n}, where i = {1, ..., n} as the collection of the ith subvectors mer-

ged from each position in the whole data set. We applied the k-means algo-
rithm to cluster each P i into k clusters (k > 1). By doing this, we were
able to encode an original numeric face vector into string tokens. For example:
[“pos1cluster2, ”“pos2cluster{k}, ”..., “pos{m}cluster1”] is an example vector that
was encoded from an origin numeric face vector by applying this encoding algorithm
with m positions and k clusters.
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4.6. Data indexing and searching method

In this subsection, we provide insights into the data-indexing progress and the me-
thod for retrieving face identities. We will elaborate in two parts (data indexing, and
searching method) as follows.

4.6.1. Data indexing

After getting string tokens from the previous encoding phase, we need to store them
for face retrieval afterward. We are aware that retrieving face recognition from string
representation is much faster than from high-dimensional numeric vectors. Therefore,
in order to achieve an optimal string-matching mechanism, we leverage the concept
of an inverted-index-based search engine from Elasticsearch (ES). To index data into
ES, we construct a JSON format that included numeric vectors and string tokens
together with some other properties of a person such as name, age, address, image
path, and so on. Such a JSON format was depicted for each face for a total of 1020
classes. The format of the JSON is demonstrated below:
body = {

"user_id": user_id,
"user_name": user_name,
"image_url": image_url,
"embed_vector": embed_vector,
"string_token": string_tokens,
"address": address,
"gender": gender,
"email": email,
...

}

In the end, we had an array of JSONs with a length that equaled that of the
training data set. Then, we simply used available ES API functions to index the data
into the Elasticsearch server.

4.6.2. Searching method

In this step, we follow the steps of the implementation that Cun (Matthew) Mu [26]
did in his paper (but for face data).

With any query image, we applied the same steps as the training steps that were
explained above to attain a string token ŝ; then, we used it for searching. The top
r-similar faces that are obtained rely on the overlap between string token set ŝ and
the ones stored on the ES server {s1, s2, ..., sn}:

i1, i2, ..., ir = argmax
i∈{1,2,...,n}

| ŝ ∩ si | . (1)

ES provides us with RESTful API for searching conveniently; all we need to do is
to build a JSON-encoded request body that would instruct the ES server to compute
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and then return the visual search results. The format for the request body is descri-
bed below:

string_tokens_chunks = list()
for i in range(num_positions):

sub_field = {
"filter": {

"term": {
"string_token": string_tokens[i]

}
},
"weight": 1

}
string_tokens_chunks.append(sub_field)

request_body = {
"size": r,
"query": {

"function_score": {
"functions": string_tokens_chunks,
"score_mode": "sum",
"boost_mode": "replace"

}
},
"rescore": {

"window_size": 5,
"query": {

"rescore_query": {
"function_score": {

"script_score": {
"script": {

"lang": "custom_scripts",
"source": "euclidean_distance",
"params": {

"vector_field": "image_actual_vector",
"query_vector": [0.0212, 0.0512, 0.0337, ...]

}
}

},
"boost_mode": "replace"

}
},
"query_weight": 0,
"rescore_query_weight": 1

}
}

}
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In the JSON format above, we establish two prime parts inside for obtaining
the sorted results from ES. The first part ("query") is a function score query [12],
responsible for retrieving r faces of which string tokens are the most similar to ŝ. The
second part ("rescore") is a custom rescore function [13] provided by ES. It helps
improve precision by reordering just the top r from the first part using Euclidean
distance, instead of applying this costly algorithm to all faces in the database. The
JSON request body plays an indispensable role in our end-to-end applications.

4.7. Model serving and management with TensorFlow

In any AI-related application, model management is necessary in order to operate the
system more easily, smoothly, and conveniently. At this point, we have had several
trained models from face detection and face embedding to a vector-to-string encoding
model that needs to served for inference time whenever it receives requests from the
face-recognition server. With these two first deep models, we convert these models into
the TensorFlow PB format instead of storing the physical file and loading it directly
on the server; then, we use the TensorFlow serving API [38] to serve and manage in
a separate server. Regarding the last one, the vector-to-string encoding model (data
version control [20]) will be leveraged.

4.8. Django framework for development and deployment

To this point, a framework is necessary in order to make our application available to
the community by providing some open API functions. Our application was developed
and deployed on the Django framework [11] (one of the most popular frameworks)
using Python.

5. Experiments

In this section, we compare our proposed pipeline to another well-known framework
(OpenFace [3]) on the VN-celeb data set in order to prove the validity of our proposed
pipeline. In addition, we also illustrate the impact of the number of positions as well
as the number of clusters in the vector-to-string encoding algorithm.

5.1. Experimental environment

Our proposed pipeline experiments were conducted on a computer with an IntelCore
i5-4460 CPU @3.2GHz, 16GB of RAM, and a 256-TB SSD hard disk. The models
were implemented with the Python Version 3.6.8 environment.

5.2. Evaluation method

5.2.1. Accuracy

Accuracy is the most important metric that is used to evaluate the efficiency and
generality of almost every model. It describes how well a model performs by providing
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a ratio between the number of correct predictions and the total elements of the testing
set. The formula is shown below:

accuracy =

∑c−1
i=0

∑nci

j=0 E(y∗j , ŷj)

N
(2)

where N is the length of the test set, c is the number of classes that need to be
predicted, nci provides how many items belonging to class ci with i = {0, 1, ..., c− 1},
and E(y∗j , ŷj) is a Boolean method to compare y∗j and ŷj that returns “1” if y∗j = ŷj and
“0” if otherwise.

5.2.2. Recall

Recall is the fraction of the number of positive predictions of classes to its actual
positive. Recall is defined as below:

recall =
1

c

c−1∑
i=0

∑npi

j=0 (E(y∗j , ŷj) == 1)

nci
(3)

As one can see in the recall formula, c is the number of classes that need to
be predicted, npi illustrates the count of positive predictions, nci shows the actual
positive of each class, and E(y∗j , ŷj) == 1 indicates one correct prediction. As one
can see in the recall formula, ‘true positive’ is assigned to those data points that are
labeled as positive that are truly positive, and ‘false negative’ is assigned to those
data points that are labeled as negative that are actually positive.

5.3. Experimental analysis

In this section, we have re-implemented and trained OpenFace [3] on the data set
above to compare with our proposed algorithm to prove the efficiency of our proposed
pipeline. Also, we divided the data into two sets for training and testing at rates of
80% and 20%, respectively.

5.3.1. OpenFace with VN-celeb data set

In order to allow for a fair comparison, we re-implement OpenFace [3] following the
same steps as we do with our algorithm. It is noteworthy that the data set only
contains frontal portrait images of Vietnamese celebrities, so the face-detection step
for training can be ignored. In the first place, we do data pre-processing as indicated
in Section 4.2 before feeding into FaceNet’s triplet loss [34] to train for a total of
150 epochs based on these empirical experiments. Since its weights were trained in
500k images, instead of initializing for the whole deep architecture, we perform fine-
tuning techniques by resetting the weights of some last FaceNet’s layers and freezing
all of the remaining layers; then, we warm up the model in 30 epochs. After this, we
unfreeze and train the whole model in the last 120 epochs.
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After the training is completed, we have a collection of numeric vectors in 128 di-
mensions from the trained model that was generated earlier that characterize each
face’s properties. As mentioned in [3], the final step is to put these vectors through
the support vector machine (SVM) [17] from Scikit-learn [31] as the classifier for the
distinction between each individual.

5.3.2. Our proposed pipeline

To gain our full pipeline, we follow the steps that are described in Section 4. We also
ignore the face-detection step for the reason that was mentioned above. In the next
step, the data pre-processing techniques in Section 4.2 are applied; the output is then
passed through VGG-Face [5] with all fully connected layers eliminated to obtain face-
representation vectors of 2048 dimensions as the default. It is clear that the dimension
of 2048 is too long for a real-time face-recognition application, so we decide to apply
PCA [46] to reduce the number of dimensions from 2048 to 512 to select the most
useful principal face components. At this point, it is to encode numeric face vectors
to string tokens; following Section 4.5, we divide all face vectors of 512 dimensions
in the training data set into m positions: P i := {xi

1, x
i
2, ..., x

i
n}, where i = {1, ..., n},

n is the length of the training data set. Then, we apply a separate k-means algorithm
from the Scikit-learn [31] library to each ith collection vector P i. The array of trained
k-means models are saved for future inference.

Using k-means models that have been trained to obtain string tokens, we combine
these tokens with some other personal properties such as name, address, phone num-
ber, division, nationality, email, numeric face vectors, etc. in order to build a JSON
object (as in Section 4.6.1) for indexing the data into the ES server.

For inference, we merely need to build a JSON request body (as in Section 4.6.2)
and make use of ES’s searching API for face retrieval to obtain the individual identity.
Finally, the top-five similar faces will be returned. The individual identity is the name
field of a record with the highest score that is calculated by the ES score function.

Particularly, all deep-learning and k-means models are protected and managed by
the TensorFlow server and DVC, respectively, as we describe in Section 4.7. Finally,
we develop and deploy our full pipeline application with the Django framework3.

5.4. Experimental results and comparison

In this section, we compare the results of our proposed method to those of
OpenFace [3], which we implemented in Section 5.3.1.

According to results’ statistics and comparisons, it can be concluded that our
proposed application brought about many benefits to face-recognition applications.
We show some statistic tables and charts below.

Tables 2, 3, and 4 represent the statistic tables that we built for the purpose of
comparing the accuracy, recall, and inference time, respectively, between OpenFace [3]

3https://www.djangoproject.com/
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and our pipeline using numeric face vectors of different dimensions within a range of
[256, 512, 2048] for the vector-to-string token algorithms. These also demonstrate the
impact of the numbers of positions and clusters in the encoding algorithm on the eva-
luation metrics.

Table 2
Our evaluation metrics affected by Npositions and Nclusters

with our face vector of 256 dimensions and OpenFace

Accuracy [%] Recall Inference time [s]
N positions N clusters Ours OpenFace Ours OpenFace Ours OpenFace

64 19 90.93 87.92 88.40 87.90 0.078 0.0445
64 20 90.74 87.92 88.33 87.90 0.097 0.0445
64 21 91.03 87.92 87.66 87.90 0.106 0.0445
64 22 91.52 87.92 87.84 87.90 0.083 0.0445
32 19 90.97 87.92 86.76 87.90 0.064 0.0445
32 20 91.20 87.92 86.84 87.90 0.063 0.0445
32 21 91.47 87.92 86.89 87.90 0.06 0.0445
32 22 91.39 87.92 87.18 87.90 0.055 0.0445
16 19 92.51 87.92 81.21 87.90 0.042 0.0445
16 20 92.97 87.92 81.24 87.90 0.039 0.0445
16 21 91.95 87.92 81.84 87.90 0.041 0.0445
16 22 92.05 87.92 81.32 87.90 0.03 0.0445

Table 3
Our evaluation metrics affected by Npositions and Nclusters

with our face vector of 512 dimensions and OpenFace

Accuracy [%] Recall Inference time [s]
N positions N clusters Ours OpenFace Ours OpenFace Ours OpenFace

64 19 90.03 87.92 89.67 87.90 0.147 0.0445
64 20 90.88 87.92 90.07 87.90 0.087 0.0445
64 21 91.03 87.92 89.01 87.90 0.078 0.0445
64 22 90.89 87.92 89.81 87.90 0.095 0.0445
64 23 91.78 87.92 89.48 87.90 0.095 0.0445
32 19 92.62 87.92 84.95 87.90 0.044 0.0445
32 20 92.50 87.92 83.78 87.90 0.052 0.0445
32 21 92.77 87.92 85.07 87.90 0.054 0.0445
32 22 92.21 87.92 84.42 87.90 0.067 0.0445
32 23 92.52 87.92 84.36 87.90 0.055 0.0445
16 19 93.94 87.92 79.02 87.90 0.05 0.0445
16 20 93.89 87.92 79.78 87.90 0.049 0.0445
16 21 93.47 87.92 80.50 87.90 0.044 0.0445
16 22 93.57 87.92 80.83 87.90 0.039 0.0445
16 23 93.68 87.92 80.49 87.90 0.046 0.0445
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Table 4
Our evaluation metrics affected by N positions and N clusters

with our face vector of 2048 dimensions and OpenFace

Accuracy [%] Recall Inference time [s]

N positions N clusters Ours OpenFace Ours OpenFace Ours OpenFace

128 32 93.52 87.92 91.59 87.90 0.175 0.0445

64 32 93.40 87.92 90.70 87.90 0.131 0.0445

32 32 94.02 87.92 88.56 87.90 0.1 0.0445

It is important to note that our accuracy completely outperformed that of the
OpenFace counterparts throughout all row records in the three tables with relative
equivalences in two recall columns; some of ours are higher (especially in Tabs. 3
and 4). Moreover, by encoding high-dimensional vectors into the string tokens, we
have the ability to gain the same performance as OpenFace did. The OpenFace lib
just takes the face vectors of 128 dimensions; meanwhile, we achieved a comparable
inference time with far higher dimensional vectors that are obviously comprised of
more facial features.

More specifically, in Table 4, both our accuracy and recall metrics are far bet-
ter than OpenFace, but the time for face retrieval was not as good for real-time
application. Besides, in Tables 2 and 3, we partitioned it into three main parts to
demonstrate our performance; this included 64 positions, 32 positions, and 16 posi-
tions within a range of [19, 20, 21, 22] clusters (and the additional cluster of 23 in
Tab. 3). With a group of 64 positions, there is every likelihood that ours overshadows
the others with greater accuracy and recall; however, the search times took an average
of 0.09 s per query. In the second group of 32 positions, our pipeline performed more
efficiently with a significant improvement in accuracy.

As for other metrics (Recall and Inference time), OpenFace outperformed our
pipeline by a small margin The last group (16 positions) outstood by fast searching
time and precision which reached a peak of an approximate accuracy of 94%; however,
the recall metric seemed to be quite modest.

Taking Tables 2 and 3 into account, the latter definitely showcased more effec-
tively with higher accuracy and recall; however, the response time was a little bit
slower than the former. In Figure 5, we constructed a bar chart of the accuracy, re-
call, and searching time that chooses the best numbers of positions and clusters for
the encoding algorithms of different dimensional face-representation vectors.

According to the above experimental results, our proposed method has the flexi-
bility of choosing a number of positions and clusters in order to achieve the desired
inference time and accuracy/recall.
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Figure 5. Accuracy, recall, and inference time comparison

6. Conclusion and future works

In this paper, we have proposed a new approach for an end-to-end facial-recognition
application with a full pipeline for both development and deployment. As shown in
the evaluation analysis above, our pipeline acquires an impressive prediction accuracy
when faced with a very challenging data set, which helps solve the problem that is
related to the dearth of face data. Also, the proposed pipeline has resulted in a very
quick prediction-response time in real-time applications. Furthermore, by applying
a vector-to-string token algorithm, we can train the model directly in computers
without the need for a GPU, which means that the cost of the expensive physical
devices that are needed for training purposes could be reduced.

Finally, instead of using a deep-learning model for identifying faces, ES is leve-
raged for the better storage, creation, and retrieval of face identity; thus, the online
learning problems in face-recognition apps are also tackled.

In the future, our tendency toward research will be to find a solution for enhancing
the accuracy of the vector-to-string token algorithm to get even better face-recognition
results.
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