
A Novel Approach to End-to-End Facial
Recognition Framework with Virtual

Search Engine ElasticSearch

Dat Nguyen Van2,3(B), Son Nguyen Trung1, Anh Pham Thi Hong1,
Thao Thu Hoang1, and Ta Minh Thanh1,4

1 Research and Development Department, Sun Asterisk, Hanoi, Vietnam
{nguyen.trung.son,pham.thi.hong.anh,hoang.thu.thao}@sun-asterisk.com

2 VinAI Research, Hanoi, Vietnam
v.datnv21@vinai.io

3 University of Engineering and Technology, Hanoi, Vietnam
4 Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam

thanhtm@mta.edu.vn

Abstract. Facial recognition has been one of the most intriguing, inter-
esting research topics over years. It involves some specific face-based AQ1

algorithms such as facial detection, facial alignment, facial representa-
tion, and facial recognition as well; however, all of these algorithms are
derived from heavy deep learning architectures, which leads to limita-
tions on development, scalability, flawed accuracy, and deployment into
publicity with mere CPU servers. It also requires large datasets con- AQ2

taining hundreds of thousands of records for training purposes. In this
paper, we propose a full pipeline for an effective face recognition applica-
tion which only uses a small Vietnamese-celebrity datasets and CPU for
training that can solve the leakage of data and the need for GPU devices.
It is based on a face vector-to-string tokens algorithm then saves face’s
properties into Elasticsearch for future retrieval, so the problem of online
learning in Facial Recognition is also tackled. In comparison with another AQ3

popular algorithms on the dataset, our proposed pipeline achieves not
only higher accuracy, but also faster inference time for real-time face
recognition applications.

Keywords: Facial recognition · Visual search engine · End-to-end
applications · Online learning · ElasticSearch

1 Introduction

1.1 Overview

Thanks to the rapid development of technologies, facial recognition is increas-
ingly better and evolving. Many companies all over the world are paying
great attention to facial recognition technology for their authentication systems

c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12951, pp. 1–17, 2021.
https://doi.org/10.1007/978-3-030-86970-0_32

A
ut

ho
r

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86970-0_32&domain=pdf
https://doi.org/10.1007/978-3-030-86970-0_32

2 D. N. Van et al.

instead of using traditional verification methods such as fingerprints or iris. It
thus has been developed in the future as well as making it practical in many
other fields. More specifically, the workable applications of the facial recogni-
tion technology in every aspect of life are diverse [30,39], such as security [29],
internet of things and mobile systems [2], real-time identification systems [5],
bio-metric systems based on motion detection and facial features [32].

Fig. 1. An overview of full pipeline for face
recognition applications

It is no wonder that a full
pipeline for the facial recognition
applications requires some underly-
ing, complex algorithms consisting
of: extracting frontal human faces
in given images, called Face Detec-
tion [16,24,26,50], optional face
alignments for aligning face’s posi-
tions [47], the necessity of repre-
senting faces in the form of numeric
vectors [17,43], and distinguishing
faces [46] relied on these continuous
vectors from previous steps. Criti-
cal reviews of such algorithms are listed below:

– Face detection, since the 2000s, had a lot of different approaches, but all were
either slow or delivered low accuracy, or both. A big innovation came in 2001
when Viola and Jones invented the Haar-based cascade classifier [41], and in
2002, it was continuously improved by Lienhart and Maydt [25]. As a result,
the algorithm has become faster and could be run in real-time with 95%
accuracy on a difficult dataset. Until 2010, along with the explosion of deep
learning [14,38], the research area has reached the state-of-the-art accuracy.

– Attaining facial feature vectors after performing face detection is greatly
essential for the recognition step. Algorithms [13,35] are examples to con-
vert these cropped face’s images into vectors of specified dimensions that
denote the most crucial face’s characteristics.

– For identity recognition, well-known approaches based on deep learning archi-
tecture like [1,12,35], with the concept of spare representation [46], basing on
clustering [36], or Cosine Loss proposed by Hao Wang in the paper [42].

A common full pipeline of facial recognition can be described in Fig. 1.

1.2 Challenging Issues

Each of the algorithms mentioned above has proved its strength and made signif-
icant contributions to the research area of face recognition application; however,
there are still some issues that need to be worked on. First of all, it can be easily
seen that these methods mostly offer only one part amongst the full pipeline
of face recognition. The adoption of deep models demonstrate more impressive
accuracy than the other approaches, but those models need to be trained on

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 3

an extremely large, diverse dataset with the size up to hundreds of thousands
or millions of images. As a result, it seems to be too slow for face application’s
development, deployment, management or comes at the expense of high-priced
physical devices. The increasing demand for GPU servers for training and deploy-
ment has been even more ubiquitous than ever. Another challenge is that the
existing online learning problems [33] make these models subject to the require-
ment of periodic training in order to preserve the system’s accuracy whenever
new faces are added. Furthermore, a scarcity of body research for the full face
recognition pipeline, it need to be researched and widen.

1.3 Our Contributions

Our contributions are summarized as follows:

1. With all these drawbacks discussed above, we have proposed a new approach
to an end-to-end facial recognition application in the form of a complete
pipeline consisting of: development, deployment, and model version manage-
ment.

2. In comparison to other well-known methods, our pipeline not only acquires
an impressive prediction accuracy with a very challenging dataset that solves
the dearth of collection of face data, but it has also gained a very speedy time
response for real-time applications.

3. Moreover, the cost for necessary physical devices is reduced exponentially by
applying a vector-to-string token algorithm, so that we can train, release the
model directly in CPU servers.

4. Last but not least, instead of using a deep learning model for identifying faces,
ES is leveraged for storing, creation, retrieval of face identity, thus the online
learning problems in face recognition apps are also tackled.

1.4 Roadmap

The rest of the paper is organized as follows. Section 2 presents reviews of related
works. Data pre-processing and re-balancing methods are shown in Sect. 3.
Section 4 discusses the proposed methods of facial recognition system and exper-
imental results are presented in Sect. 5. Our conclusions and future works are
described in Sect. 6.

2 Related Works

2.1 Face Detection

Face detection, which means determining the location and size of a human face in
a digital image, is a fundamental step for many face-related technologies. There
is a variety of face-based algorithms that take face detection as the foundation
to acquire adequate accuracy, such as face verification [13], face recognition [48],
face anti-spoofing [22]. In the other works, the purpose of the face detection

A
ut

ho
r

Pr
oo

f

4 D. N. Van et al.

algorithm is to improve the accuracy of these algorithms by eliciting only the
frontal faces as the algorithm’s inputs. To date, some adoption of deep learn-
ing architectures using the concept of convolutional neural network (CNN) for
this step like MTCNN [50], Cascade CNN [24], R-CNN [16], SSD [26], etc have
achieved remarkable progresses.

2.2 Face Representation

Face representation (in other words, facial-features extraction) is the process
of encoding raw facial images into continuous vector representation in high-
dimensional feature space [43]. Traditionally, facial features are extracted by
manually design patterns as edges, lines, four-rectangle features in Viola Jones
algorithm [40] or grids of Histograms of Oriented Gradient (HOG) descriptors
[11].

Nowadays, statistical facial-features extraction has been performed automati-
cally and more efficiently (in terms of both time and feature quality [43]), through
CNN, a class of deep neural networks [17]. Allowing spatial features preserva-
tion, CNNs are suitable for learning feature embedding for 2-D topology data
type, including images and facial pictures [17]. Using facial embedding learned
by CNNs out-performs most traditional methods in several downstream tasks
including Face Recognition, Face Verification [43].

2.3 Principal Component Analysis (PCA)

PCA [15] is a dimensionality reduction technique that was created in 1901 by
Karl Pearson. It uses recognition of statistical design to shrink dimensional-
ity and extract features. This approach has been used in various applications
since its appearance, such as handwritten recognition, neuroscience, quantita-
tive finance, and image compression.

2.4 FaceNet Architecture in OpenFace

FaceNet [35] was developed in 2015 by Google researchers for the face recognition
task. Essentially, a CNN is responsible for extracting features of the face image.
The CNN training was performed on large datasets (vggface, MS-Celeb-1M).
The key feature of FaceNet is that it uses the Triplet loss function to minimize
the distance between similar faces and maximize the distance to dissimilar faces:

loss(A,P,N) = max(‖f(A) − f(P)‖2 − ‖f(A) − f(N)‖2 + α, 0),

where A is anchor input, P is a positive input, N is a negative input, α is a
margin between positive and negative pairs.

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 5

3 Dataset

Fig. 2. The number of images in each class

Our proposed model
is implemented on the
VN-Celeb1 dataset that
is a collection of Viet-
namese celebrities’s
images collected from
google image search.
The dataset contains
24.125 images belong-
ing to 1020 famous
Vietnamese people
(1020 classes). More
specifically, the aver-
age number of photos
in each class is around 23; 7 classes have only 2 shots, and the class with the
most images has up to 105. It can be said that the dataset is very challenging
both in term of size and of each class’ proportion. To elaborate,

– The numbers of images of each class are severely imbalanced.
– The size of dataset is small in comparison to other face recognition dataset.
– Some problems affecting differences recognition such as: lighting condition,

posing, and picture quality (Fig. 3). AQ4

Fig. 3. Some noise images in the VN-Celeb dataset like black and white, blurred, low
resolution, masked.

Firstly, the image’s proportion between classes is severely imbalanced. Table 1
illustrates the percentage of the classes classified by the range of the number of
photos. We can see that the proportions of classes in two ranges: [2, 5) and [50,
105] are only 5%, 3% respectively; meanwhile, the classes belonging to scope [30,
50) account for 27%. Especially, classes having [5, 30) elements show the highest
percentage of 65%. As you can see in Fig. 2, the distribution of images in each
class is extremely disproportionate, because the number of photos stretch widely
from 2 to 105 per class.

1 https://drive.google.com/drive/folders/1I3KXcGpmm6zpw y07p-7wIKt5K08iOgc.

A
ut

ho
r

Pr
oo

f

https://drive.google.com/drive/folders/1I3KXcGpmm6zpw_y07p-7wIKt5K08iOgc

6 D. N. Van et al.

Table 1. The image proportion

No shots [2, 5] [5, 30] [30, 50] [50, 105]

Percentage 5% 65% 27% 3%

Secondly, the size of the VN-
Celeb dataset consists of 24.125
images, while the number of
classes is 1020. In other words,
this task would fall into the problem of few-shot learning [44] - generalizing from
a few training examples.

Another issue is the variation of the dataset images in lighting conditions,
pose, and image quality... Many photos show only one part of the face, have the
head upside-down, or show no face. Moreover, there are both grayscale and RGB
color photos included.

4 Proposed Model

In this section, the proposed pipeline would be described step by step and illus-
trations will be provided in order to demonstrate the idea in more detail.

As mentioned in the previous section, the dataset is challenging. The size
is only 24.1k images containing 1020 classes, which is of much smaller size and
much more imbalanced comparing to other datasets such as FaceNet’s [35] private
dataset with 100M-200M, DeepFace [37] using a private dataset with 4.4M images,
OpenFace [2] training on combined dataset CASIA-WebFace [49] and FaceScrub
[28], and so on. Therefore, before the dataset can be passed into the Face Embed-
ding model to get representing vectors for training purposes in the encoding phase,
data cleaning, re-balancing, and some other data preprocessing techniques must
be performed. Our proposed pipeline application is shown in Fig. 4.

4.1 Face Detection

This phase plays an integral role in the accuracy of the whole application, and is
the foundation for subsequent steps. After experimenting some tools like Dlib [21],
Haar Cascades [3], MTCCN [50], etc to extract faces from given images, we decide
to take 2 methods for this phase, these methods are interchangeable depending
on particular spec. Firstly, we train SSD [26] with based network MobileNet on
Labeled Faces in the Wild dataset [23] to take advantage of the fast inference
time of MobileNet architecture [20]. Another choice is using a pre-trained library,
MTCNN [50]. Although detecting faces with MobileNet-SSD gives better perfor-
mance, the bounding boxes results are not as good as those of MTCNN counter-
parts. So, hinging on the purposes, we can switch between two methods.

4.2 Data Pre-processing

The dataset implemented is really challenging due to its size, its properties, and
the proportion of the image in each class that needs to be preprocessed. To miti-
gate adverse effects and enhancing the system’s accuracy, we generated more data
to classes in which the number of images lower than 20 by applying some non-
geometric preprocessing techniques including Blurring, Sharpening, Smoothing,
Histogram Equalization, Gamma Correction =⇒ DOG Filtering =⇒ Contrast
Equalization [34]. The dataset obtained after preprocessing is passed through the
next step to get face representation for training in the encoding phase.

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 7

Fig. 4. Workflow of the application

4.3 Face Embeddings with VGG-Face

At this step, the embedding vectors containing the most informative face ele-
ments represented as a form of the numeric array is extracted from a DNN.
Based on experiments and evaluation on some deep learning architectures like
FaceNet [35], VGG-Face [4], ArcFace [13], VGG-Face was chosen because of both
its accuracy and performance running on our framework. The based model is
ResNet50 [18], all Fully Connected Layers are removed for converting face image
into numeric representing vectors that can be used for recognizing purpose.

4.4 Reducing Face Vector Dimensions by PCA

The default dimension output of VGG-Face is 2048. As far as we know, it is
very difficult for real-time applications to run on the server without GPU, since

A
ut

ho
r

Pr
oo

f

8 D. N. Van et al.

the computational cost is very high and may hurt the performance of our whole
framework detrimentally. So some data dimension reduction algorithms need to
be implemented. An attempt of training and evaluating a list of array dimensions
in the range [256, 512, 1024] was conducted through a combination between this
phase and the encoding phase to find the best dimension for production deploy-
ment (which will be explained in the next subsection). Finally, after assessing
both accuracy and performance deliberately, we decided to apply PCA [45] to
compress from 2048 to 512 dimensions as the best dimension to represent face
data.

4.5 Encoding Face Embeddings to String Tokens

Fig. 5. Illustration of the subvector-wise
clustering

In this section, we explain
the reason why we decided
to change the data-type for
face representation. Actually, it
is possible to recognize which
name of a person after get-
ting numeric face embedding
vectors extracted from VGG-
Face by using well-known sim-
ilarity methods like Euclidean,
Cosin, or a deep learning classi-
fication model. However, using
these methods to calculate sim-
ilarity within all face vectors of high dimensions to find the best similar faces
is computationally expensive and time-consuming. Besides, another option of
using deep learning algorithms for this task is proposed, but it has long infer-
ence time and high latency due to the complexity of deep model architectures for
recognition, not to mention inefficiency regarding the online learning problems.
The problems mentioned above have proved that the application is challenging
and difficult to put into practice as well as to apply in real-life. In this paper,
we utilize an encoding algorithm from [27] to convert numeric face vectors into
collections of string tokens that can be retrieved faster with Elasticsearch, which
is beneficial for real-time applications. The encoding algorithm is inspired by the
idea of subvector-wise clustering. More specifically, with any numeric face vector
x ∈ R

d, we divide it into m position as below:

[x1, ..., xd/m, xd/m+1, ..., x2d/m,, xd−d/m+1, ..., xd]

Considering m position as m subvectors = {x1, x2, ..., xm}, and P i :=
{xi

1, x
i
2, ..., x

i
n} where i = {1, ..., n} as the collection of the ith subvectors merged

from each position in the whole dataset. We apply k-means algorithm to cluster
each P i into k clusters (k > 1). By doing that, we are able to encode the original
numeric face vector into string tokens. For example:

[“pos1cluster2”, “pos2cluster{k}”, ..., “pos{m}cluster1”]

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 9

is an example vector encoded from an origin numeric face vector applying the
encoding algorithm above with m positions and k clusters. The illustration of
the encoding algorithm is in Fig. 5.

4.6 Data Indexing and Searching Method

We provide insights about the data indexing progress and the method for retriev-
ing face identity. We elaborate in two parts: Data Indexing and Searching Method
as follows.

Data Indexing. After getting string tokens from the previous encoding phase,
we need to store them for face retrieval afterward. Adding to the fact that we
are aware that retrieving face recognition from string representation is much
faster than from high dimension numeric vectors, in order to achieve an optimal
string matching mechanism, we leverage the concept of inverted-index-based
search engine from Elasticsearch (ES). To index data into ES, we construct a
JSON format including numeric vectors, string tokens together with some other
properties of a person such as a name, age, address, image path, and so on. Such
JSON format depicts for each face in a total of 1020 classes. The format of the
JSON is demonstrated below:

1 body = {
2 ” u s e r i d ” : u s e r i d ,
3 ”user name” : user name ,
4 ” image ur l ” : image ur l ,
5 ” embed vector ” : embed vector ,
6 ” s t r i n g t ok en ” : s t r i n g t ok en s ,
7 . . .
8 }

In the end, we have an array of JSON with the length equals to that of the train-
ing dataset. Then, we simply use available ES API (Application Programming
Interface) functions to index data into Elasticsearch Server.

Searching Method. In this step, we follow the steps of implementation Cun
(Matthew) Mu [27] did in his paper, but for face data.

With any query image, we apply the same steps as the training steps
explained above to attain a string token ŝ, then use it for searching. Top r
similar faces are obtained relied on overlap between string tokens set ŝ and the
ones stored in ES server {s1, s2, ..., sn}

i1, i2, ..., ir = argmax
i∈{1,2,...,n}

| ŝ ∩ si | (1)

ES provides us with RESTful API for searching conveniently, all we need to
do is to build a JSON-encoded request body which would instruct the ES server
to compute and then return the visual search results.

A
ut

ho
r

Pr
oo

f

10 D. N. Van et al.

In the JSON format, we establish 2 prime parts inside for getting sorted
results from ES. The first part taking function score query [8] that is responsible
for finding top r faces that share the most common in string tokens with ŝ, then
using a custom rescore API function [9] provided by ES to re-sort the collection
of top r vectors above. The JSON request body plays an indispensable role in
our end-to-end applications.

4.7 Model Serving and Management with Tensorflow

In any AI-related application, model management is necessary in order to operate
the system more easily, smoothly, conveniently. At this point, we have had several
trained models from Face Detection, Face Embedding to vector-to-string encod-
ing model that needs to served for inference time whenever receiving requests
to face recognition server. With these two first deep models, instead of storing
the physical file and loading it directly in the server, we convert these models
into TensorFlow PB format then using TensorFlow serving API [10] to serve
and manage in a separate server. Regarding the last one, the vector-to-string
encoding model, Data Version Control [7] is leveraged.

4.8 Django Framework for Development and Deployment

To this point, in order to make our application available to the community by
providing open API functions, a framework is necessary. Our application was
developed and deployed on the Django Framework [6], one of the most popular
framework using Python.

5 Experiments

In this section, to prove the validity of our proposed pipeline, we compare our
proposed pipeline to another well-known framework, OpenFace [2] on the VN-
celeb dataset. In addition, we also illustrate the impact of the number of positions
as well as the number of clusters in the vector-to-string encoding algorithm.

5.1 Experimental Environment

Our proposed pipeline experiments are conducted on a computer with IntelCore
i5-4460 CPU @3.2 GHz, 16 GB of RAM, and 256 GB SSD hard disk. The models
are implemented with the python 3.6.8 environment.

5.2 Evaluation Method

Accuracy. Accuracy is the most important metric which is used to evaluate
the efficiency and generality of almost every model. It describes how well the
model performs by providing a ratio between the number of correct predictions
and the total elements of testing set. The formula is shown below:

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 11

accuracy =

∑c−1
i=0

∑nci

j=0 E(y∗
j , ŷj)

N
, (2)

where N is the length of test set, c is the number of classes that need to predict,
nci provide how many items belonging to class ci with i = {0, 1, ..., c − 1}, and
E(y∗

j , ŷj) is a boolean method to compare y∗
j and ŷj which return “1” if y∗

j = ŷj

and “0” if otherwise.

Recall. Recall is the fraction of the number of positive prediction of classes to
it’s actual positive. Recall is defined as below:

recall =
1
c

c−1∑

i=0

∑npi

j=0 (E(y∗
j , ŷj) == 1)

nci
(3)

As you can see in the recall formula: c is the number of classes that need
to predict, npi illustrates the count of positive prediction, nci show the actual
positive of each class and E(y∗

j , ŷj) == 1 indicates one correct prediction.

5.3 Experimental Analysis

In this section, to prove the efficiency of our proposed pipeline, we have re-
implemented and trained OpenFace [2] on the above dataset to compare with
our proposed algorithm.

OpenFace with VN-celeb Dataset. In order to allow a fair comparision, we
re-implement OpenFace [2] following the same steps as we do with our algorithm.
It is noteworthy that the dataset only contains frontal, portrait images of Viet-
namese celebrities, so the face detection step for training can be ignored. In the
first place, we do data preprocessing as in Sect. 4.2 before feeding into FaceNet’s
triplet loss [35] to train for a total of 150 epochs based on this empirical exper-
iments. However, since its weights have been trained in 500k images, instead
of initializing for the whole deep architecture, we do fine-tuning techniques by
resetting weights of some last FaceNet’s layers and freezing all the remaining
layers, then warming up the model in 30 epochs. After that, we unfreeze and
train the whole model in the last 120 epochs.

After training completed, we have a collection of numeric vectors in 128
dimensions from the trained model generating above that characterize the face’s
properties. As mentioned in [2], the final step is to put these vectors through
the Support Vector Machine (SVM) [19] from Scikit-learn [31] as the classifier
for the distinction between each individual.

Our Proposed Pipeline. To gain our full pipeline, we follow the steps
described in Sect. 4. We also ignore face detection step for the reason mentioned
above. In the next step, data preprocessing techniques in Sect. 4.2 is applied,

A
ut

ho
r

Pr
oo

f

12 D. N. Van et al.

the output then passed through VGG-Face [4] with all fully connected layers
eliminated to get face representation vectors of 2048 dimensions as default. It
is clear that the dimension of 2048 is too long for a real-time face recognition
application, so we decide to apply PCA [45] to reduce the number of dimensions
from 2048 to 512 to select the most useful face principal components. At this
point, it is to encode numeric face vectors to string tokens, following Sect. 4.5, we
divide all face vectors of 512 dimensions in the training dataset into m positions:
P i := {xi

1, x
i
2, ..., x

i
n}, where i = {1, ..., n}, n is the length of the training dataset.

Then, we apply separate k-means algorithm from Scikit-learn [31] library to each
ith collection vector P i. The array of trained k-mean’s models are saved for future
inference.

Using k-mean’s models which have been trained to get string tokens, we
combine these tokens with some other personal properties such as name, address,
phone number, division, nationality, email, numeric face vectors, etc to build a
JSON object as in Sect. 4.6 for indexing data into ES server.

For inference, to get the individual identity, we just need to build a JSON
request body as in Sect. 4.6 and make use of ES’s searching API for face retrieval.
Finally, the top best 5 similar faces would be returned. The individual identity is
the name field of a record with the highest score calculated by ES score function.

Particularly, all deep learning, as well as k-means models, are protected and
managed by TensorFlow serving and DVC respectively as we describe in Sect. 4.7.
Finally, we develop and deploy our full pipeline application with the Django
framework2.

5.4 Experimental Results and Comparison

In this section, we compare the results of our proposed method to that of Open-
Face [2], which we implemented in Sect. 5.3.

According to result’s statistic and comparison, it can be concluded that our
proposed application bring about many benefits to face recognition applications.
Let’s see some statistic tables and chart below:

Table 2, Table 3, Table 4 represent statistic tables we built for the purpose of
comparing the accuracy, recall and inference time between OpenFace [2] and ours
pipeline using numeric face vectors of different dimensions in range of [256, 512,
2048] for vector-to-string tokens algorithms. They also demonstrate the impact
of the number of positions, clusters in the encoding algorithm on the evaluation
metrics. It is important to note that our accuracy completely outperforms that
of the OpenFace counterparts throughout all row records in the three tables with
relatively equivalent in two recall columns, some of ours are higher, especially in
Table 3 and Table 4. Moreover, by encoding high-dimensional vectors into string
tokens, we have the ability to gain the same performance as OpenFace did. The
OpenFace lib just takes face vectors of 128 dimensions, meanwhile, we got a
comparable inference time with far higher dimensional vectors that obviously
comprise more facial features.

2 https://www.djangoproject.com/.

A
ut

ho
r

Pr
oo

f

https://www.djangoproject.com/

A Novel Approach to End-to-End Facial Recognition Framework 13

Table 2. Ours evaluation metrics affected by Npositions and Nclusters with our face
vector of 256 dimensions and OpenFace

N positions N clusters Accuracy Recall Inference time

Ours OpenFace Ours OpenFace Ours OpenFace

64 19 90.93 87.92 88.40 87.90 0.078 s 0.0445 s

64 20 90.74 87.92 88.33 87.90 0.097 s 0.0445 s

64 21 91.03 87.92 87.66 87.90 0.106 s 0.0445 s

64 22 91.52 87.92 87.84 87.90 0.083 s 0.0445 s

32 19 90.97 87.92 86.76 87.90 0.064 s 0.0445 s

32 20 91.20 87.92 86.84 87.90 0.063 s 0.0445 s

32 21 91.47 87.92 86.89 87.90 0.06 s 0.0445 s

32 22 91.39 87.92 87.18 87.90 0.055 s 0.0445 s

16 19 92.51 87.92 81.21 87.90 0.042 s 0.0445 s

16 20 92.97 87.92 81.24 87.90 0.039 s 0.0445 s

16 21 91.95 87.92 81.84 87.90 0.041 s 0.0445 s

16 22 92.05 87.92 81.32 87.90 0.03 s 0.0445 s

Table 3. Ours evaluation metrics affected by Npositions and Nclusters with our face
vector of 512 dimensions and OpenFace

N positions N clusters Accuracy Recall Inference time

Ours OpenFace Ours OpenFace Ours OpenFace

64 19 90.03 87.92 89.67 87.90 0.147 s 0.0445 s

64 20 90.88 87.92 90.07 87.90 0.087 s 0.0445 s

64 21 91.03 87.92 89.01 87.90 0.078 s 0.0445 s

64 22 90.89 87.92 89.81 87.90 0.095 s 0.0445 s

64 23 91.78 87.92 89.48 87.90 0.095 s 0.0445 s

32 19 92.62 87.92 84.95 87.90 0.044 s 0.0445 s

32 20 92.50 87.92 83.78 87.90 0.052 s 0.0445 s

32 21 92.77 87.92 85.07 87.90 0.054 s 0.0445 s

32 22 92.21 87.92 84.42 87.90 0.067 s 0.0445 s

32 23 92.52 87.92 84.36 87.90 0.055 s 0.0445 s

16 19 93.94 87.92 79.02 87.90 0.05 s 0.0445 s

16 20 93.89 87.92 79.78 87.90 0.049 s 0.0445 s

16 21 93.47 87.92 80.50 87.90 0.044 s 0.0445 s

16 22 93.57 87.92 80.83 87.90 0.039 s 0.0445 s

16 23 93.68 87.92 80.49 87.90 0.046 s 0.0445 s

Table 4. Ours evaluation metrics affected by Npositions and N clusters with our face
vector of 2048 dimensions and OpenFace

N positions N clusters Accuracy Recall Inference time

Ours OpenFace Ours OpenFace Ours OpenFace

128 32 93.52 87.92 91.59 87.90 0.175 s 0.0445 s

64 32 93.40 87.92 90.70 87.90 0.131 s 0.0445 s

32 32 94.02 87.92 88.56 87.90 0.1 s 0.0445 s

A
ut

ho
r

Pr
oo

f

14 D. N. Van et al.

Fig. 6. Accuracy, recall and inference time comparison

More specifically, in Table 4 both our accuracy and recall metrics are far
better than the OpenFace, but the time for face retrieval is not as good for real-
time application. Besides, in Table 2 and Table 3, we partition it into 3 main
parts to demonstrate our performance that includes: 64 positions, 32 positions,
16 positions with a range of [19–22] clusters, an addition cluster of 23 in Table 3.
With group of 64 positions, there is every likelihood that ours overshadows the
other with greater accuracy and recall, but the search time gets an average of 0.09
s per query. More balanced in the second group, our pipeline acts more efficiently
with a significant improvement of accuracy and marginally lower in the other
metrics. Last but not least, the last group come faster search time, much more
precise and reach a peak of an approximate accuracy of 94%; however, the recall
metric seems to be quite modest.

Taking account into Table 2 and Table 3, all in all, the second one definitely
showcases more effectively with higher accuracy and recall, but the response
time is a little bit slower than the other one. Referring to Fig. 6, we construct a
bar chart of accuracy, recall and searching time that chooses the best numbers
of positions, clusters for the encoding algorithm of different dimensional face
representation vectors.

6 Conclusion and Future Works

In this paper, we have proposed a new approach for an end-to-end facial recog-
nition application with full pipeline for both development and deployment. As
shown in evaluation analysis above, our pipeline acquires an impressive predic-
tion accuracy when facing with a very challenging dataset, which help solve

A
ut

ho
r

Pr
oo

f

A Novel Approach to End-to-End Facial Recognition Framework 15

the problem related to the dearth of face data. Also, the proposed pipeline has
resulted in very quick prediction response time in real-time application. Further-
more, by applying a vector-to-string token algorithm, we can train the model
directly in computers without the need of GPU, which means the cost for expen-
sive physical devices needed for training purpose could be reduced.

Finally, instead of using a deep learning model for identifying faces, ES is
leveraged for better storing, creation, and retrieval of face identity, thus the
online learning problems in face recognition apps are also tackled. AQ5

In the future, our tendency research is finding a solution for enhancing accu-
racy of the vector-to-string tokens algorithm to get even better face recognition
results.

References

1. Almabdy, S., Elrefaei, L.: Deep convolutional neural network-based approaches for
face recognition. Appl. Sci. 9, 4397 (2019). https://doi.org/10.3390/app9204397

2. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: OpenFace: a general-purpose face
recognition library with mobile applications. Technical report CMU-CS-16-118,
CMU School of Computer Science (2016)

3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
4. Cao, Q., et al.: VGGFace2: A dataset for recognising faces across pose and age

(2018). arXiv: 1710.08092 [cs.CV]
5. Chowdhry, D.A., et al.: Smart security system for sensitive area using face recog-

nition. In: 2013 IEEE Conference on Sustainable Utilization and Development in
Engineering and Technology (CSUDET), pp. 11–14 (2013)

6. Django Contributors. Django 3.1 (2020). https://www.djangoproject.com/
7. DVC Contributors. Iterative, DVC: Data Version Control - Git for Data & Models

(2020). https://doi.org/10.5281/zenodo.012345
8. Elasticsearch Contributors. Function Score query 6.8 (2019). https://www.elastic.

co/guide/en/elasticsearch/reference/6.8/query-dslfunction-score-query.html
9. Elasticsearch Contributors. Rescoring 6.8 (2019). https://www.elastic.co/guide/

en/elasticsearch/reference/6.8/search-request-rescore.html
10. Tensorflow Contributors. Tensorflow Serving 6.8 (2019). https://github.com/

tensorflow/serving
11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), vol. 1, pp. 886–893 (2005)

12. Deb, D., Nain, N., Jain, A.K.: longitudinal study of child face recognition (2017).
arXiv: 1711.03990 [cs.CV]

13. Deng, J., et al.: ArcFace: additive angular margin loss for deep face recognition
(2019). arXiv: 1801.07698 [cs.CV]

14. Deng, J., et al.: RetinaFace: single-stage dense face localisation in the wild (2019).
arXiv: 1905.00641 [cs.CV]

15. Karl Pearson, F.R.S.: LIII. On lines and planes of closest fit to systems of points
in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901).
https://doi.org/10.1080/14786440109462720

16. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and
semantic segmentation (2014). arXiv: 1311.2524 [cs.CV]

A
ut

ho
r

Pr
oo

f

https://doi.org/10.3390/app9204397
http://arxiv.org/abs/1710.08092
https://www.djangoproject.com/
https://doi.org/10.5281/zenodo.012345
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/query-dslfunction-score-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/query-dslfunction-score-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-request-rescore.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-request-rescore.html
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving
http://arxiv.org/abs/1711.03990
http://arxiv.org/abs/1801.07698
http://arxiv.org/abs/1905.00641
https://doi.org/10.1080/14786440109462720
http://arxiv.org/abs/1311.2524

16 D. N. Van et al.

17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

18. He, K., et al.: Deep residual learning for image recognition (2015).
arXiv: 1512.03385 [cs.CV]

19. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4),
18–28 (1998)

20. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications (2017). arXiv: 1704.04861 [cs.CV]

21. King, D.E.: Dlib-Ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–
1758 (2009). ISSN: 1532-4435

22. Komulainen, J., Hadid, A., Pietikainen, M.: Context based face anti-spoofing, pp.
1–8, September 2013. https://doi.org/10.1109/BTAS.2013.6712690

23. Huang, G.B., Learned-Miller, E.: Labeled faces in the wild: updates and new
reporting procedures. Technical report UM-CS-2014-003. University of Mas-
sachusetts, Amherst, May 2014

24. Li, H., et al.: A convolutional neural network cascade for face detection. In: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–
5334 (2015)

25. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object
detection. In: Proceedings of International Conference on Image Processing, vol.
1, p. I (2002)

26. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2. ISBN 978-3-319-46447-3

27. Mu, C., et al.: Towards practical visual search engine within elasticsearch (2019).
arXiv: 1806.08896 [cs.CV]

28. Ng, H.-W., Winkler, S.: A data-driven approach to cleaning large face datasets. In:
2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 343–347,
January 2015. https://doi.org/10.1109/ICIP.2014.7025068

29. Owayjan, M., et al.: Face recognition security system, December 2013
30. Parmar, D., Mehta, B.: Face recognition methods & applications. Int. J. Comput.

Technol. Appl. 4, 84–86 (2014)
31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
32. Rima, S., et al.: Smart security surveillance using IoT, pp. 659–663, August 2018.

https://doi.org/10.1109/ICRITO.2018.8748703
33. Sahoo, D., et al.: Online deep learning: learning deep neural networks on the fly

(2017). arXiv: 1711.03705 [cs.LG]
34. Satish, A., Devarajan, N.: Preprocessing technique for face recognition applications

under varying illumination conditions. Glob. J. Comput. Sci. Technol. Graph. Vis.
12, 13–18 (2012)

35. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2015. https://doi.org/10.1109/cvpr.2015.7298682.
http://dx.doi.org/10.1109/CVPR.2015

36. Shi, Y., Otto, C., Jain, A.K.: Face clustering: representation and pairwise con-
straints. IEEE Trans. Inform. Forensics Secur. 13(7), 1626–1640 (2018). https://
doi.org/10.1109/tifs.2018.2796999. https://dx.doi.org/10.1109/TIFS.2018

37. Taigman, Y., et al.: DeepFace: closing the gap to human-level performance in face
verification, September 2014. https://doi.org/10.1109/CVPR.2014.220

A
ut

ho
r

Pr
oo

f

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/BTAS.2013.6712690
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1806.08896
https://doi.org/10.1109/ICIP.2014.7025068
https://doi.org/10.1109/ICRITO.2018.8748703
http://arxiv.org/abs/1711.03705
https://doi.org/10.1109/cvpr.2015.7298682
http://dx.doi.org/10.1109/CVPR.2015
https://doi.org/10.1109/tifs.2018.2796999
https://doi.org/10.1109/tifs.2018.2796999
https://dx.doi.org/10.1109/TIFS.2018
https://doi.org/10.1109/CVPR.2014.220

A Novel Approach to End-to-End Facial Recognition Framework 17

38. Tang, X., et al.: PyramidBox: a context-assisted single shot face detector (2018).
arXiv: 1803.07737 [cs.CV]

39. Tolba, A., El-Baz, A., El-Harby, A.: Face recognition: a literature review. Int. J.
Signal Process. 2, 88–103 (2005)

40. Vikram, K., Padmavathi, S.: Facial parts detection using Viola Jones algorithm. In:
2017 4th International Conference on Advanced Computing and Communication
Systems (ICACCS), pp. 1–4 (2017)

41. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features, vol. 1, p. I-511, February 2001. ISBN: 0-7695-1272-0. https://doi.org/10.
1109/CVPR.2001.990517

42. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition (2018).
arXiv: 1801.09414 [cs.CV]

43. Wang, M., Deng, W.: Deep face recognition: a survey (2018). arXiv: 1804.06655
[cs.CV]

44. Wang, Y., Yao, Q.: Few-shot learning: a survey. CoRR abs/1904.05046 (2019).
arXiv: 1904.05046. http://arxiv.org/abs/1904.05046

45. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1), 37–52 (1987). Proceedings of the Multivariate Statistical
Workshop for Geologists and Geochemists. ISSN 0169-7439. https://doi.org/10.
1016/0169-7439(87)80084-9. http://www.sciencedirect.com/science/article/pii/01
69743987800849

46. Wright, J., et al.: Robust face recognition via sparse representation. IEEE Trans.
Pattern Anal. Mach. Intell. 31, 210–227 (2009). https://doi.org/10.1109/TPAMI.
2008.79

47. Yang, H., et al.: An empirical study of recent face alignment methods, November
2015. https://doi.org/10.13140/RG.2.1.4603.8484

48. Yang, J., et al.: Nuclear norm based matrix regression with applications to face
recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal.
Mach. Intell. 39(1), 156–171 (2017)

49. Yi, D., et al.: Learning face representation from scratch (2014). arXiv: 1411.7923
[cs.CV]

50. Zhang, K., et al.: Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503 (2016). https://
doi.org/10.1109/LSP.2016.2603342

A
ut

ho
r

Pr
oo

f

http://arxiv.org/abs/1803.07737
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
http://arxiv.org/abs/1801.09414
http://arxiv.org/abs/1804.06655
http://arxiv.org/abs/1904.05046
http://arxiv.org/abs/1904.05046
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
http://www.sciencedirect.com/science/article/pii/0169743987800849
http://www.sciencedirect.com/science/article/pii/0169743987800849
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.13140/RG.2.1.4603.8484
http://arxiv.org/abs/1411.7923
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1109/LSP.2016.2603342

Author Queries

Chapter 32

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author has been
identified as per the information available in the Copy-
right form.

AQ2 Please check and confirm if the authors given and family
names have been correctly identified.

AQ3 Per Springer style, both city and country names must be
present in the affiliations. Accordingly, we have inserted
the city and country names “Hanoi, Vietnam” in second
affiliation. Please check and confirm if the inserted city
and country names are correct. If not, please provide us
with the correct city and country names.

AQ4 Please check and confirm if the inserted citation of Fig.
3 is correct. If not, please suggest an alternate citation.

AQ5 Kindly provide the volume number and page range for
Ref. [3], if applicable.

A
ut

ho
r

Pr
oo

f

