
https://doi.org/10.1007/s10489-021-02429-9

ORIGINAL SUBMISSION

Solving distribution problems in content-based recommendation
systemwith gaussian mixture model

Nguyen Van Dat1 · Pham Van Toan1 · Ta Minh Thanh2

Accepted: 10 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recommendation systems play an important role in boosting purchasing consumption for many manufacturers by helping
consumers find the most appropriate items. Furthermore, there are quite range of recommendation algorithms so far that can
be efficient; however, a content-based algorithm is always the most popular, powerful, and productive method taken at the
begin time of any project. In the negative aspect, somehow the accuracy of content-based algorithm results is still a concern
that correlates to probabilistic similarity. In addition, the similarity calculation method is another crucial that affect the
accuracy of content-based recommendation in probabilistic problems. In order to solve these problems, we propose a new
content-based recommendation based on the Gaussian Mixture Model to improve the accuracy with more sensitive results
for probabilistic recommendation problems. Our proposed method is experimented on a liquor dataset including six main
flavour tastes, liquor main taste tags, and some other criteria. The method clusters n liquor records relied on n vectors of six
dimensions into k group (k < n) before applying a formula to sort the results. Compared our proposed algorithm with three
other popular models on the above dataset, the accuracy of the experimental results not only outweighs the comparison to
those of three other models but also attain a very speedy response time in real-life applications.

Keywords Recommendation system · Content-based · Gaussian Mixture Model (GMM) · Distribution recommendation

1 Introduction

1.1 Overview

Due to the proliferation of the internet, it has brought
tremendous chance for people’s lives. On the other hand,
the myriad and abundance of information on the web
has determined a rapidly increasing difficulty in finding
what we actually need in a way that can fit the best
our requirements [7, 29]. Recommendation systems can

� Ta Minh Thanh
thanhtm@mta.edu.vn

Nguyen Van Dat
nguyen.van.dat@sun-asterisk.com

Pham Van Toan
pham.van.toan@sun-asterisk.com

1 Research and Development Dept, Sun Asterisk,
Ha Noi, Viet Nam

2 Le Quy Don Technical University, 236 Hoang Quoc Viet, Cau
Giay,Ha Noi, Viet Nam

be effective way to solve such problems without requiring
users provide explicit requirements [8]. Instead, the system
can analysis the content data of item properties, which
actively recommend information on users that can satisfy
their needs and interests. So far, the algorithms applying
for a recommendation system are diverse, but it would
be grouped as three major basic approaches [22] as
Content-Based (CB) [32], Collaborative Filtering (CF) [35]
and Knowledge-Based [27] Recommendation System. The
general content-based architecture is shown in Fig. 1.
How to design an effective recommendation algorithm has
become the focus of research.

Content-based filtering algorithm is widely used because
of its simplicity and effectiveness, high efficiency at the
beginning time of any recommendation systems. According
to Pasquale Lops in Chapter-3 Content-based recommen-
dation system: State of the Art and Trends [1], there are
many benefits reaped from content-based recommendation
systems compared to the other Collaborative Filtering (CF)
one such as: user independence, transparency, new items
in case of cold-start problems. Beside that, there is still
some shortcomings existing as limited content for analyz-
ing, over-specialization or lack of rating data of new users

/ Published online: 25 May 2021

Applied Intelligence (2022) 52:1602–1614

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02429-9&domain=pdf
mailto: thanhtm@mta.edu.vn
mailto: nguyen.van.dat@sun-asterisk.com
mailto: pham.van.toan@sun-asterisk.com

Fig. 1 High level architecture of
a Content-based
Recommendation

and adequate accuracy for some specific problems. Accord-
ing some available research, Hangyu et al. in [3] used
Gaussian mixture model (GMM) for CF recommendation
algorithm to solve the sparse user rating data. Chen et al. in
[4] proposed a hybrid model, which combines GMM with
item-based CF recommendation algorithm and predicted
the ratings on items from users to improve the recommen-
dation accuracy. Rui Chen et al. in [5] employed GMM
with enhanced matrix factorization to reduce the negative
effect of sparse and high dimension data. In the context
of music recommender systems, Yoshii et al. [6] proposed
a hybrid recommender system that combines collaborative
filtering via user ratings and content-based features mod-
eled via GMM over Mel Frequency Cepstrum Coefficients
(MFCCs) by utilizing a Bayesian network. However, CF
or hybrid systems require behaviour history of users that
is the reason for the need of content-based recommenda-
tion (CB). Furthermore, CB based on distribution of item
features have not been resolved yet. A telling of example
is using content-based recommendation for automatically
find similar items based on distribution and distance of its
features. In Fig. 2, these two bar charts illustrate the devi-
ation between six properties, called {f1, f2, f3, f4, f5, f6}
of our experimental dataset, belonging to two separated
items (one original item (blue: item 1), one suggestion item
(orange: item 2) are recommended by taking advantage of
sorting formula, distance (the above chart) and distribution
(the below chart)). The “Values” of chart shows the sim-
ilarity of original data and that of suggestion one. These

kind of probabilistic problems in recommendation systems
is quite different which cannot be solved by usual common
methods.

Furthermore, in some situation, the description of
content data of items features is not reliable, inadequate,
that detrimentally affect to the accuracy of content-based
recommendation systems [7]. The other crucial aspect
is the inference time that is unsatisfactory for real-life
applications.

1.2 Challenging issues

Based on the above explanation, we define our challenge
issues as follows:

(i) How to build the recommendation system that solve the
distribution problems of item’s properties in Content-
Based Recommendation?

The conventional content-based recommendation sys-
tems are developed based on a matching property algorithm;
or are driven by a rating prediction function such that when
a new user rates a few items. In general, such CB that are
user-independence which usually cannot obtain a high qual-
ity suggestion results on distribution of item’s properties,
and there has no any related-research to resolve the problem.
Therefore, the proposal of recommendation system that can
take advantage of current probabilistic models to utilize this
type of data in the CB, is required.

Solving distribution problems in content-based... 1603

Fig. 2 An example between
using distribution and distance
calculation for distribution
recommendation

It is the time for the probabilistic model like GMM, etc

that come to light.

(ii) How to gain better performance of content-based
recommendation systems both in accuracy and time
response to apply for real applications?

Real-time response ability is of great importance to
recommendation systems. After any user’s interaction on
the system, the recommended results are required to
show as soon as possible. Our proposed method firstly
clusters the prospective items into several groups by GMM,
then uses Gaussian Filter Function (GFF) to arrange the
recommendation list in order to suggest users real-time.

More specifically, our algorithm leverage the type of
continuous data of item’s properties, going parallel in

reducing the reliance on item’s text fields (flavour tags,
description, etc.) which are sometimes inadequate, precise
enough to detrimentally affect the recommendation results.

(iii) How to verify the efficiency of our proposed method
comparing with other recommendation systems?

In order to verify the efficiency of our proposed method,
we employ the dataset of a real recommendation system
using for suggesting Japanese liquors, called Sakenowa.
Our recommended results are compared to those of
the Sakenowa system, so that it can demonstrate the
improvement of our system which become better than the
Sakenowa. Beside, we also compare our method to three
previous recommendation techniques by accuracy, time
reference stats to prove the practicality of ours.

N. Van Dat et al.1604

1.3 Our contributions

Due to three problems mentioned above, in this paper we
propose a new approach/model for solving these problems
by using Gaussian mixture model [9] to cluster all items into
different groups relied on distributions of those property
before applying a Gaussian Filter function (GFF) as a
calculation similarity method for sorting recommendation
item results. Our technique have solved the issue (i) and
(ii) with significant improvement on accuracy and time
reference in the content-based distribution recommendation
system by focusing on GMM and GFF.

In order to solve the issue (iii), for demonstrating our
effective model, we experiment and compare to three other
popular methods, Bag of Word [10] with GFF (BOW +
GFF), GMM with euclidean distance (ED) [11] (GMM
+ ED), and Word2Vec [23] with GFF (W2V + GFF).
Our proposed model not only outperform the accuracy of
the three others, but it also get better in prediction time
response.

1.4 Roadmap

The paper is organized as follows. Related works are
introduced in Section 2. In Section 3, the dataset is described
while Section 4, the architecture and details of proposed
model is given. Experiments and evaluation in Section 5.
The conclusion, improvement and future work will be
explained in Section 6.

2 Related works

In this section, we introduce some preliminary knowledge
that needs to be used in our method. The detailed
explanation information can be referred as follows.

2.1 Preliminary knowledge

2.1.1 Popular similarities

In the Content-based algorithm, the similarity calcula-
tion method directly affects the accuracy of recommended
results. Some similarity calculation methods have been
widely used which are listed below:

euclidean distance: One of the most popular
methods to measure the similarity between two vectors by
calculating the sum of square distance of each element
respectively in those vectors [11].

Cosin: The main idea here is to measure two vectors by
calculating the cosine of angle between the two vectors [33].

Pearson: The pearson correlation coefficent reflects
the degree of linear correlation between two vectors [36].

Jaccard: The Jaccard similarity is often used to
compare similarity and different between two finite sample
set [31].

2.1.2 Gaussian Mixture Model (GMM)

Gaussian mixture model is a function that is comprised of
several Gaussians, GMM can fit any type of distribution,
which is usually used to solve the case where the data in
the same set contains multiple different distributions [14].
Each distribution is identified by k ∈ {1..K}, where K is the
number of clusters of our dataset. Each Gaussian k in the
mixture is comprised of the following parameters:

– A mean μ defined its center.
– A covariance � that defined its width. This would

be equivalent to the dimension of an ellipsoid in a
multivariate scenario.

– A mixing probability α that defines how big or small
the Gaussian function will be.

GMM is defined as:

p(x) =
k∑

i=1

αi .N(x|μi, σi), (1)

where N(x|μi, �i) is the ith component of the hybrid
model, which is a probability density function of the n

dimensional random vector x obeying Gaussian distribution
and can be defined as below:

N(x) = 1

(2π)
n
2 | � | 1

2

ε− 1
2 (x−μ)T

∑−1(x−μ) (2)

and
k∑

i=1

αi = 1 (3)

We assume that a sample set D = {x1, x2, x3, ..., xm} is
given that obey Gaussian distribution. We use the random
variable zj ∈ {1, 2, ..., k} to represent the mixed component
of the generated sample xj , whose value is unknown. It
can be seen that the prior probability P(zj = i) of zj

corresponds to αi(i = 1, 2, 3, ..., k). According to Bayes’
theorem [12], we can get the posterior probability of zj

which is defined as follows.

p(zj = i|xj) = P(zj = i).p(xj |zj = i)

p(xj)
= αi .N(xj |μi, �i)∑k

l=1 αl .N(xj |μl, �l)

(4)

In the above formula, p(zj = i|xj) represents the posterior
probability of sample xj generated by the ith Gaussian
mixture. Assuming γij = {1, 2, 3, ..., k} to represent p(zj =
i|xj). When the model parameters {(αi, μi, �i)|1 ≤ i ≤ k}

Solving distribution problems in content-based... 1605

in the above equation are known, the GMM clusters divide
the sample set D into k clusters C = {C1, C2, ..., Ck} [14],
and the cluster label λj of each sample xj can be determined
according to equation below:

λj = arg maxi∈1,2,3,...,kγji (5)

We get the cluster label λj to which xj belongs
and divides xj into cluster Cλj

. The model parameters
{(αi, μi, �i)|1 ≤ i ≤ k} is solved by applying EM
algorithm [13] (Fig. 3).

(i) Related Content-based Recommendation Systems

Content-Based Algorithm is one of the most
common method in building the recommendation systems.
The algorithm is born from the idea of using the content
descriptions of each item for recommending purposes. It
can be divided into two main approaches: Analysing the
description of item properties only; and building user profile
for individuals based on content features of items and
personal rating data [1]. In next sub-section, we will walk
around these two concepts of CB and investigate some
related CB systems.

(ii) Analysing the description of item properties only

In case of raw and pure data about item properties,
and not personalized recommendation, we can build a
system that can return similar items based on the identical
properties in each item. For example, we have N records
Xn = {x1, x2, ..., xN } with xi containing h properties, xi =
{p1, p2, ..., ph}. Therein, pi can be any kind of factor of a
product in real-life such as price, tags, content description,
brand, and so on. The main conception here is to try to figure
out items that have the same in segment of content as much
as possible to conclude that is in a group items similar.

(iii) Building user profile for individuals based on the
content of items

In this case, it supposes to be that we have C users
Un = {u1, u2, ..., uc}, n items Xn = {x1, x2, ..., xn}, and

Fig. 3 Gaussian mixture model

rating data on some items of each user. The main idea here
is to take advantage of sparse rating data to predict some
of the most possible items that fulfill the best interest for
each user profile. The system analyze a set of documents
and/or descriptions of items previously rated by users, and
build a profile of user interest based on the features of
the objects rated by that user. The profile is a structured
representation of user interests, adopted to recommend new
items. The system process basically consists in matching
up the attributes of user profile against the attributes of
a content object. The result is a relevance judgment that
represents the user’s level of interest in that object.

(iv) Using Word Embedding in Content-based Recom-
mendation Systems

Being inspired with another approach that is taking
care more about the semantic meaning of words rather
than just assessing the weight of words in a document
by term frequency–inverse document frequency (TF-IDF)
weighting. In natural language processing, due to the
linguistic ambiguity, item representation by traditional
keyword-based is unable to capture the semantic meaning
of words because they are primarily driven by a string
matching operation that causes exponentially to the
accuracy of CB algorithms. As the result, the adoption of
using word embedding in CB is to solve this problem.
In paper [23], Cataldo Musto et al. developed a CB
Recommendation system using textual features extracted
from Wikipedia to learn users’ profiles based on such word
embedding. Their algorithm based on Word Embedding
including Latent Semantic Indexing [26] (LSI), Random
Indexing [34] (RI) and Word2Vec [30] (W2V) showed
results comparable to those of well-performing algorithms
based on CF and Matrix Factorization.

(v) Using Bag of Word for Movie Recommendation
System

Recently, Bhattacharya et al. [10] have built a simple
but potent web-app which take advantage of scikit-learn
python library [21] to recommend movies on IMDB movie
database 1. The dataset has many columns; however,
they merely take the plot, actors and directors for more
accuracy. Firstly, the selected columns are cleaned by some
preprocessing techniques then important keywords would
be extracted to form bag of word (BoW) matrix. Their
application relied on the concept of cosine similarity. The
workflow of their web application is referred as Fig. 4.
According to the flow of BoW method shown in Fig. 4,
it allows word modeling based on dictionaries, where each
bag contains a few words from the dictionary. Therefore,
the movie recommendation system only used plot, actors

1https://datasets.imdbws.com/

N. Van Dat et al.1606

https://datasets.imdbws.com/

Fig. 4 Workflow of the web-app
application

and directors from the dataset to generate recommendation
model. It may not be flexible for big dataset included more
important features.

3 Real dataset for our proposedmethod

Our proposed model is implemented on a dataset about
liquors, more specifically, about sake which is one of the
most prevalent kind of liquor in Japan. In addition, it
was collected from Sakenowa2 dataset being one of the
most well-known and reputed website selling the sake.
The dataset totally contains 1072 records characterized by
19 properties such as liquor name, liquor brand, year of
manufacture, liquor images, liquor flavour tags, liquor 6-
axis flavour tastes (f1, f2, · · · , f6) stands for fruity, mellow,
rich, mild, dry and light, and so on.

Noticeably, liquor 6-axis flavour tastes and liquor flavour
taste tags would play much more important role than
the others as the suggestion and observation from liquor
experts. The more proportional distribution between each
pair of elements in the 6-axis flavor taste, the better
liquor recommendation will be. The range value of 6-axis
flavour tastes (f1 − f6) axis is in [0, 1], meanwhile the
dominant parts belong to [0.2, 0.6]. Here is an example 6-
axis flavor taste elicited from the dataset {f1: 0.516103,
f2: 0.484763, f3: 0.203029, f4: 0.419481, f5: 0.276085,
f6: 0.453028}. Such 6-axis flavour tastes values mainly
affect to the efficiency of recommendation system in real
applications. In the Sakenowa service, we found that,
the recommendation results are suggested by using the
comparison between 6-axis flavour tastes values.

The text fields in the dataset all is written behind
Japanese form. Our task is by somehow actively recommend
liquors as much similar as possible when users take a glance
to a random liquor. Figure 5 shows that 6-axis flavour tastes

2https://sakenowa.com

have same important role in algorithm of recommendation
system.

However, this is a real challenging dataset due to lack of
many fields that lead to sparse in data, especially in six main
fields f1, ..., f6. So, our task of recommendation become
more difficult and be negatively reduce the recommendation
results. More specifically, a disappearance or null value of
6-axis fields is greater than 30%, a nearly 2% of null value
flavour tags. Further more, many tag value is unreliable,
untrust and incorrect that need to be cleaned and pre-
processed. Table 1 is the table statistic about lack of field’s
value in the dataset, some other fields is not included in this
table.

Based on the analytic from Table 1, the dataset is
needed to be pre-processed and adjusted before applying
the recommendation algorithms. Some terms in the dataset
which is presented by Japanese, also is modified for
standardizing data.

Fig. 5 A visualization about 6-axis flavour taste

Solving distribution problems in content-based... 1607

https://sakenowa.com

Table 1 Dataset blank fields statistic

f1..6 Flavour tags Product name(en)

Float String String

30.4% 1.77% 13.4%

4 Proposed content-based recommendation
system

4.1 Proposedmodel

In this section, we introduce and explain our proposed
model in detail. As it was mentioned in previous part, we
have to return the most similar products based on 19 meta-
data fields. In particular, 6-axis flavour tastes and flavour
tags are the main factors mostly affecting to the results both
in the sensibility and accuracy side. Therefore, we just select
6-axis flavour tastes and flavour tags for better results. The
more similar in 6-axis flavour tastes, the better results will
be.

More detail, we initially use GMM to cluster all items
into K = {1, 2, ..., k} group, then sorting results in each

group with each item. Whenever finding top similar items
of a item, we just jump up to the group the item belongs
to and sort the group’s items to return top m similar items.
To sort the results, it is also possible to use some popular
similarity calculation such as cosine or euclidean
distance. In this paper, for achieving better accuracy,
we use a equation that calculates the distribution weight
between two vectors obeying Gaussian distribution (normal
distribution). The results illustrate that the more similar in
6-axis amongst items the bigger weights will be germinated.
The flow of our proposed model is shown in Fig. 6.

4.2 Detailed algorithm

(i) Data pre-processing

It is a fact that text mining is very important in
every text-related problems, and CB is not an exception.
Previously mentioned, we only choose flavour tags and
6-axis flavour tastes as the features for computing the
similar between items. The flavour tags are the set of
text document written behind Japanese form which require
to be cleaned. We convert 6-axis into float and need to
do some pre-process techniques for such flavour tags text

Fig. 6 The model Activities
Diagram

N. Van Dat et al.1608

fields like tokenization, stemmings, stop word removal, find
and replace synonyms, lemmatization, and so on [2, 28]
before utilizing it. Moreover, the flavour tags field has been
splitted into different semantic words, so we disregard the
tokenization step and move forward with the other steps.

(ii) Clustering

As we recognize that the final recommendation items
depend too much on 6-axis flavour tastes and flavour tags.
In the common and traditional way, there is a way to
build a vector representing for all properties of each item,
then utilizing a similarity calculation method like cosine
or euclidean to sort and return top m results. However, in
some case, the flavour tags are not adequate and precise
enough that adversely affect to the final recommendation.
Moreover, there is always an unseen problem of using
cosine or euclidean that a compensate between each
element of 6-axis flavour tastes (f1 − f6) leads to unequal
among those elements(f1 − f6) of results. Therefore, we
decide to group all items based on it’s distribution 6-axis
flavour tastes into different clusters to ensure items which
have the same distribution will be in the same cluster that is
the foundation for sorting afterwards (refer Fig. 7).

(iii) Gaussian Filter Function for sorting

As we have K = {1, 2, ..., k} clusters, we assume a
query item is the center of the cluster we want to find. Our
destination is figure out top m items that have the same
distribution as much as possible, so Gaussian filter function
(GFF) is the better choice than cosine or euclidean. The
Gaussian function equation is defined as follows:

Gkl(fil, fjl) = exp − (fil − fjl)
2

2σ 2
kl

, (6)

where Gkl(fil, fjl) is considered as a weight between each
pair of element lth in 6-axis flavour tastes of two different
items (i, j) in cluster k, l = {1, 2, ..., 6}, and σkl is the
standard deviation of the lth element in 6-axis flavour tastes
in group k. Equation for σkl is defined as follows:

σkl =
√∑nk

i=1 (filk − μ)2

nk − 1
, (7)

where nk is the number of items belong to cluster k, filk

is the value of lth of f in 6-axis flavour tastes of ith item
and μ is the mean value of all fl , in group k. We calculate

G(x, y) six times for 6 fields f1 − f6 for each pair items
over all items of a group to sort in descending to find top
best results.

(iv) Levenshtein distance for comparison

The flavour tags also play a quite significant role in the
final results. We treat tags as vital as each element in 6-axis
flavour tastes such as f1 − f6. To compare and measure the
similarity between two tags of string type, we use a good
of levenshtein distance to solve it [15]. In our experiments,
we use levenshtein distance leva,b(i, j) as a string metric
for measuring difference between two sequences (tags). The
equation of the levenshtein distance is defined as follows:

leva,b(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i, j), if min(i, j)=0

min =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1, otherwise

leva,b(i − 1, j − 1) + 1(ai �=bj)

where a and b are two tags of string that need to compute the
levenshtein distance. leva,b(i, j) is the distance between the
first i characters of tag a and the first j characters of tag b.

(v) Final sorting formula

Combine weight calculating function for 6-axis flavour
tastes and tags comparison with levenshtein distance (LD),
we establish a equation for sorting to get final results as
below:

S(i, j) =
K∑

k=1

6∑

l=1

Gkl(i, j) + levtags(i, j), (8)

where Gkl is the Gaussian weight function (6) correspond-
ing lth in 6-axis flavour tastes between itemi and itemj in
cluster k (k = {1, ..., K} K groups), levtags(i, j) is the lev-
enshtein function to compare tags similarity of those two
items. We determine that the bigger S(i, j), the better simi-
lar between those two items, so we sort by descending order
all items of a cluster and return top m items having bigger
S(i, j) value.

(vi) Proposed model pseudo code

For clearly, we give the proposed model its algorithm
execution process to help readers more easily visualize and
imagine our entire process. Let see pseudo code below:

Solving distribution problems in content-based... 1609

4.3 Applicable to real-life applications

Actually, our algorithm has been using to solve a liquor
recommendation system which is deploying in Japan.
According to our experiment compared to results of three
other popular, potent methods, our algorithm not only
outweighs results of those models, but it also gain better,
faster inference time that is over eligible for real-life
applications. In particular, the time required for training
after a period of time of new adding items is also very
marginal.

In this paper, we cluster all items based on 6-axis flavour
tastes, but the algorithm can apply for lower or greater
number of six properties.

5 Experiments

To prove the validity of our proposed model, we compare
our proposed model to three other popular algorithms
widely used in CB systems such as BOW + GFF,
GMM + ED, W2V + GFF. We also illustrate the impact of
GMM cluster into the accuracy and the efficiency of GFF
equation in sorting results rather than those of cosine or
euclidean distance.

5.1 Experimental environment

All our experiments are implemented in python 3.6.8
environment. The experimental PC with Ubuntu version
16.04.7 is used to test the algorithms. The capacity of
the liquor flavor taste (rawdata) crawled from Sakenowa
website is 717Kb. Then, that of preprocessed liquor flavor
taste data is 690Kb.

The evaluation method of recommendation systems
commonly used is Root Mean Square Error (MSE) that is
the average of the square errors [16]. The MSE value can be
calculated as follows:

MSE = 1

N

n∑

1

(ri − r̂i)
2, (9)

Fig. 7 GMM Visualization

N. Van Dat et al.1610

Fig. 8 MSE apply BOW+GFF and W2V+GFF

where ri is the predicted representing vector item, and r̂i is
the original representing vector item.

We also use the recommendation results in Sakenowa
as the standard measure (baseline results) to compare
with our three algorithms because the sake website has
so much reputation, popularity, being well-known for
commercial purpose in Japan for many years. Beside,
the recommendation results of the Sakenowa is also very
impressive.

5.2 Experimental analysis

Some experiments is conducted to verify the impact of GMM,
GFF on probabilistic recommendation problem. Our main
proposed model was implemented through such steps as data
statistic, data cleaning, data missing value filling, clustering
all items into different clusters and eventually using Gaussian
filter and levenshtein distance to sort the results. To verify
the effective impact of GMM and GFF on better prediction,
we divided our experiments into four parts. Firstly, we use
Bag-of-Word (BOW) [10] algorithm on some properties like
flavour tags before applying GFF for sorting results. In the
second way, we apply GMM + ED to clarify the influence
of GMM, and W2V + GFF in the third experiment. Finally,
we implemented our main proposed model to prove the
impact of GMM + GFF then give some comparison. All
experiments are unraveled in detail below:

(i) Experiment 1: BOW+GFF

The reason for this experiment is to verify the impact
on result accuracy of GMM compared to BOW [10]
algorithm. Therefore, in the experiment, we implement
BOW algorithm comprised with GFF used for sorting on
our liquor dataset. Firstly, we do some data preprocessing
for text data like stemming, replacing synonyms, filling
missing data, etc [2]. As it was mentioned above, all
important text fields were written behind Japanese form, so

we use some tools offered for Japanese preprocessing like
Ginza [19], Janome [20], JapaneseStemmer [18] inspired by
Porter Stemming Algorithm [17], etc. Before using GFF for
sorting, we employ BOW on these preprocessed properties
to find the vector matrix representing for the item. The next
step, we feed the vector matrix into K-nearest neighbors
(K-NN) algorithm using unsupervised K-NN Scikit-Learn
[21] to find top similar items based on these vectors. In these
top items, we calculate values S using the (8) to get the best
similar items.

(ii) Experiment 2: GMM+ED

To demonstrate the impact of GMM, firstly, we still apply
some preprocessing steps for text fields as the experiment
above. After that, we build a matrix of 6 dimensions
representing for 6-axis flavour tastes, then feed it into GMM
for training, saving all cluster results corresponding to each
item. Next step, we convert a collection of text flavour
tags into a matrix of token counts using CountVectorizer of
Scikit-Learn [21] and concatenate along same axis with the
matrix of 6 dimensions for sorting. Finally, to return the best
similar items of a given item, we just jump up to the cluster
containing it and apply ED for sorting the results and get top
best similar items of the given item.

(iii) Experiment 3: W2V+GFF

To reduce the linguistic ambiguity, and solve the
limitation in semantic meaning of words of BOW algorithm
and compare with our algorithm. In this part, we experiment
W2V [23] combining with TF-IDF for flavour tags, then
congregate with the matrix of 6-axis flavour tastes to get
item representation before sorting results by GFF. As two
previous experiments, we also conduct data preprocessing
techniques as same steps as we did. Next step, as flavour
tags are written behind Japanese form, so we use W2V
pretrained model with 300 dimensions from [25] and

Fig. 9 MSE apply GMM+GFF and GMM+ED

Solving distribution problems in content-based... 1611

Fig. 10 Similar percent statistic compare to Sakenowa

Gensim [24] for loading word embeddings model for each
Japanese tag. To represent each item by its flavour tag, we
combine tag embeddings with TF-IDF by the below formula
(10):

Vf t =
∑q

ti=1 T FIDFti ∗ W2Vti∑q

ti=1 T FIDFti

, (10)

where t i is corresponding to tagi in flavour tags of a
liquor item, q is the number of tags of the flavour tags which
is equivalent to the length of the flavour tags of a liquor item.

After that, to get all item representation, we concatenate
the word embeddings matrix along axis with 6-axis flavour
tastes to get the final matrix of 306 dimensions. By the
concept of Cosine Similarity, we leverage it for finding top
prospective items before calculating the value S from the (8)
in these items to get the best similar items.

Fig. 11 MSE affected by number of clusters

Fig. 12 MSE affected by number of neighbors

(iv) Experiment 4: GMM+GFF

Our three above experiment to prove the important role of
GMM and GFF in our proposed model. In this experiment,
in the first place, we also do preprocessing techniques for
text fields as same steps in three previous experiments. After
that, we build a matrix of 6 dimensions representing for
6-axis flavour tastes and feed the matrix into GMM for
training purpose, then save cluster results for each items. To
find top best similar items of a given item, we jump up into
the cluster the query item lied in, consider the query item as
center then apply (8) equation pair in pair with all items in
the cluster, then sorting discerningly to return the top best
similar items.

5.3 Experimental results and comparison

In this section, we compare our proposed algorithm with
the recommendation results from the Sakenowa website and
three other popular CB algorithms. The recommendation
results from Sakenowa for each item are returned from an
web API (Application Programming Interface) 3; therein,
f1...6 in the API are the value for each flavour taste,
respectively.

According to the experimental results, we conclude that
our result accuracy outweighs the Sakenowa and these three
algorithm counter parts. Our comparison results are shown
in Figs. 8, 9, and 10.

3https://sakenowa.com/api/v1/brands/flavor?f=0&fv=f 1,f 2,f 3,f 4,
f 5,f 6

N. Van Dat et al.1612

https://sakenowa.com/api/v1/brands/flavor?f=0&fv=f_1,f_2,f_3,f_4,f_5,f_6
https://sakenowa.com/api/v1/brands/flavor?f=0&fv=f_1,f_2,f_3,f_4,f_5,f_6

Table 2 Time response per query

BOW+GFF GMM+ED W2V+GFF GMM+GFF

0.1856s 0.0174s 0.0251s 0.0156s

All four experiments return top ten(10) best similar items
for each item in the dataset. In Fig. 8, list values of MSE
are shown and affected through an array of number of
prospective neighbors of a item ranging from [20-40] in
K-NN algorithm and cosine similarity matrix. Despite the
tendency of decrease, but it is insignificant and the inference
time is extremely slow due to bigger number of neighbors,
particularly in the K-NN algorithm. It is very clearly to see
that in this figure, caring more about the semantic meaning
of words from W2V totally beat the performance of the
BOW algorithm; despite, using the same GFF similarity
calculation behind.

In Fig. 9, the gap of MSE between GMM + ED and
GMM + GFF is shown. It is very clearly seen that GMM
+ GFF generated better results than the other that verify
the effect of GMM in comparison to ED in sorting results.
Both these two experiments showed the effect of the number
of clusters of GMM ranging from [65-85]. In Fig. 10, we
compare our prediction results of all items in dataset to the
recommendation results from the Sakenowa and construct
a list of similarity proportion affected by the number of
clusters.

In Figs. 11 and 12, we constructed a chart of statistic
of MSE generated from GMM + ED, BOW + GFF,
W2V + GFF, GMM + GFF and recommendation results
from Sakenowa. It is matter of fact that our GMM +
GFF algorithm outperforms all the others method that
demonstrate the effective of our algorithm.

Further more, our time response in Table 2 also beat these
three others, GMM + ED, W2V + GFF and BOW + GFF.

Referring to Figs. 9, 8, 11 and 12, we have a conclusion
that taking 6-axis flavour tastes superior priority rather
than flavour tags give better results in our recommendation
system, and the very effective, robust and productive GMM
in solving the distribution recommendation.

There is much evidence that recommendation-based
GMM would works well on datasets in which the values
of those main properties obey continuous datatype or the
like that is the main reason other algorithms like BOW,
W2V taking text fields higher priority give lower quality
recommendation results compared to our algorithm.

6 Conclusion and future work

In this paper, we have proposed an very effective algorithm
for recommendation system using content-based features

with GMM, and apply for solving a liquor recommendation
system which is deploying in Japan. Furthermore, we have
also proposed a new sorting similarity method for list of
potential items instead of using popular methods like Cosine
or Euclidean.

More specially, our probabilistic-based recommendation
systems not only acquire a remarkable prediction accuracy,
but it has also very speedy prediction time response for real-
time application. Our algorithm are flexible that can use for
lower or greater 6 properties in other datasets which show
similar distribution with our liquor dataset. The reason for
this because we have tried several experiments with 3, 4,
5, 6 of liquor flavor taste combining with flavor tags, and
all of them outperform the other approaches in Experiment
section. We only choose 6 flavor taste (f1 - f6) instead of
3, 4, 5 as representative for our paper due to f1-f6 play
important role equally. Although, the algorithm has many
advantages, its limitation is need to re-train after a period of
time of adding new items into the system. In additional, our
dataset currently is collected from Sakenowa (a very popular
website selling sake in Japan) possessing characteristics
and type of distribution quite distinctively which does not
show the resemblance of context to the current benchmark
datasets. Therefore, our proposed algorithm would not be
suitable with these available datasets.

In the future, our tendency research is finding a solution
of GMM improvement for clustering items to get even better
recommendation results.

Acknowledgements We would like to thanks to Sun* Inc in general,
and particularly, R&D Department that helping us a lot. Without the
support this paper cannot be accomplished.

References

1. Lops PdeG, Giovanni MS (2011) Content-based recommender
systems: State of the art and Trends. https://doi.org/10.1007/978-
0-387-85820-3-3

2. Rahutomo RL, Muljo F, Bens HP (2019) Preprocessing meth-
ods and tools in modelling japanese for text classification.
https://doi.org/10.1109/ICIMTech.2019.8843796

3. Yan H, Yan T (2019) collaborative filtering based on gaussian
mixture model and improved jaccard similarity. IEEE Access.
PP.1–1 https://doi.org/10.1109/ACCESS.2019.2936630

4. Fan-sheng K (2010) Hybrid Gaussian pLSA model and item based
collaborative filtering recommendation. Computer Engineering
and Applications

5. Chen RH, Gao Q, Ying QX (2018) A hybrid recommender
system for gaussian mixture model and enhanced social matrix
factorization technology based on multiple interests. Math
Problems Eng 2018:1–22. https://doi.org/10.1155/2018/9109647

6. Yoshii KG, Komatani M, Ogata K, Hiroshi OT (2006) Hybrid
collaborative and content-based music recommendation using
probabilistic model with latent user preferences. In: ISMIR 2006
- 7th international conference on music information retrieval,
pp 296–301

Solving distribution problems in content-based... 1613

https://doi.org/10.1007/978-0-387-85820-3-3
https://doi.org/10.1007/978-0-387-85820-3-3
https://doi.org/10.1109/ICIMTech.2019.8843796
https://doi.org/10.1109/ACCESS.2019.2936630
https://doi.org/10.1155/2018/9109647

7. Khusro SA, Irfan ZU (2016) Recommender systems: Issues, chal-
lenges, and research opportunities. https://doi.org/10.1007/978-
981-10-0557-2-112

8. Zhu BB, Fernando JO (2018) Reliability quality measures for
recommender systems. Information Sciences

9. Douglas R (2008) Gaussian mixture models. Encyclopedia of
Biometrics. https://doi.org/10.1007/978-0-387-73003-5-196

10. Bhattacharya S, Ankit L (2019) Movie recommendation system
using bag of words and scikit-learn. Int J Eng Appl Sci Technol
04:526–528. https://doi.org/10.33564/IJEAST.2019.v04i05.076

11. Liberti LL, Maculan C, Antonio MN (2012) Euclidean distance
geometry and applications. SIAM Rev 56 https://doi.org/10.1137/
120875909

12. Lee D, Hull J, Erol B (2003) A Bayesian framework for Gaussian
mixture background modeling. In: Proceedings 2003 international
conference on image processing (Cat. No.03CH37429), vol 3,
pp III–973

13. Lu Y, Bai X, Wang F (2015) Music recommendation system
design based on gaussian mixture model. ICM 2015

14. Görür D, Carl R (2010) Dirichlet process gaussian mixture
models: Choice of the base distribution. J. Comput. Sci. Technol.
25:653–664. https://doi.org/10.1007/s11390-010-9355-8

15. Haldar R, Debajyoti M (2011) Levenshtein distance technique in
dictionary lookup methods: An improved approach. Computing
Research Repository - CORR

16. Shani G, Asela G (2011) Evaluating recommendation systems.
https://doi.org/10.1007/978-0-387-85820-3-8

17. Robertson S (1997) Readings in information retrieval
18. MrBrickPanda (2019) Japanese Stemmer. Github. https://github.

com/MrBrickPanda/Japanese-stemmer
19. Hiroshi M, Masayuki (2019) Ginza NLP Library. Github. http://

www.anlp.jp/proceedings/annual-meeting/2019/pdf-dir/F2-3.pdf
20. Janomepy (2019) Janome. Github. https://github.com/mocobeta/

janome
21. Pedregosa F, Alexandre V, Michel (2011) scikit-learn: Machine

learning in Python. J Machine Learn Res 12:2825–2830
22. Jeran FA, Ninaus M, Reinfrank G, Reiterer F, Martin SS (2014)

Basic approaches in recommendation systems. https://doi.org/10.
1007/978-3-642-45135-5–2

23. Musto CS, de Gemmis G, Pasquale ML (2016) Learning Word
Embeddings from Wikipedia for Content-Based Recommender
Systems. 9626:729–734 https://doi.org/10.1007/978-3-319-
30671-1-60

24. Řehůřek R, Sojka P (2010) Software framework for topic
modelling with large corpora. 45–50. https://doi.org/10.13140/2.1.
2393.1847

25. Yamada IS, Takeda H, Yoshiyasu HT (2016) Joint learning of the
embedding of words and entities for named entity disambiguation.
250–259. https://doi.org/10.18653/v1/K16-1025

26. Quispe P, Ocsa OE, Ricardo AC (2017) Latent semantic indexing
and convolutional neural network for multi-label and multi-class
text classification. 1–6. https://doi.org/10.1109/LA-CCI.2017.
8285711

27. Rosa RS, Ruggiero G, Rodriguez WV, Zegarra D (2018)
A Knowledge-Based recommendation system that includes
sentiment analysis and deep learning. IEEE Trans Indust Inform
PP:1–1. https://doi.org/10.1109/TII.2018.2867174

28. Kadhim A (2018) An evaluation of preprocessing techniques
for text classification. Int J Comput Sci Inform Secur 16:22–
32

29. Mansur FP, Mihir VP (2017) A review on recommender systems.
1–6. https://doi.org/10.1109/ICIIECS.2017.8276182

30. Czarnowska P, Emerson GE, Copestake AA, 2019 Words are
Vectors, Dependencies are Matrices: Learning Word Embeddings
from Dependency Graphs. IWCS

31. Cheng J, Li Z (2019) Jaccard coefficient-based bi-clustering
and fusion recommender system for solving data sparsity
https://doi.org/10.1007/978-3-030-16145-3-29

32. Rutkowski TR, Woldan J, Staszewski P, Nielek P, Leszek RR
(2018) A Content-Based Recommendation System Using Neuro-
Fuzzy Approach. 1–8. https://doi.org/10.1109/FUZZ-IEEE.2018.
8491543

33. Roy PC, Rocky BS (2020) A Machine Learning approach
for automation of Resume Recommendation system. Procedia
Comput Sci 167:2318–2327. https://doi.org/10.1016/j.procs.2020.
03.284

34. Chatterjee N, Nidhika Y (2019) Hybrid latent semantic anal-
ysis and random indexing model for text summarization: pro-
ceedings of third international conference on ICTCS 2017
https://doi.org/10.1007/978-981-13-0586-3-15

35. Li Y, Wang S, Pan Q, Peng H, Yang T, Cambria E (2019)
Learning binary codes with neural collaborative filtering for
efficient recommendation systems. Knowl Based Syst 172:64–
75

36. Feng WZ, Zhuang Q, Yu JS (2019) An expert recommendation
algorithm based on Pearson correlation coefficient and FP-growth.
Cluster Comput 22 https://doi.org/10.1007/s10586-017-1576-y

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Nguyen Van Dat is currently
pursuing the master’s degree
of Computer Science at the
University of Engineering and
Technology. He has also grad-
uated at the Military Techni-
cal Academy as the Bachelor’s
degree of Software Engineer-
ing in 2017. His major inter-
ested research areas including
Computer Vision, Recommen-
dation Systems, and Cognitive
Science.

Ta Minh Thanh is Lecturer of
Faculty of Information Tech-
nology, Le Qui Don Technical
University, Ha Noi, Viet Nam.
He is also Postdoctoral Fellow
of Department of Mathemati-
cal and Computing Sciences at
Tokyo Institute of Technology.
He received his B.S. and M.S
of Computer Science from
National Defense Academy,
Japan, in 2005 and 2008, and
his Ph.D. from Tokyo Insti-
tute of Technol- ogy, Japan,
in 2015, respectively. He is
the member of IPSJ Japan and

IEEE. His research interests lie in the area of watermarking, network
security, and computer vision.

N. Van Dat et al.1614

https://doi.org/10.1007/978-981-10-0557-2-112
https://doi.org/10.1007/978-981-10-0557-2-112
https://doi.org/10.1007/978-0-387-73003-5-196
https://doi.org/10.33564/IJEAST.2019.v04i05.076
https://doi.org/10.1137/120875909
https://doi.org/10.1137/120875909
https://doi.org/10.1007/s11390-010-9355-8
https://doi.org/10.1007/978-0-387-85820-3-8
https://github.com/MrBrickPanda/Japanese-stemmer
https://github.com/MrBrickPanda/Japanese-stemmer
http://www.anlp.jp/proceedings/annual-meeting/2019/pdf-dir/F2-3.pdf
http://www.anlp.jp/proceedings/annual-meeting/2019/pdf-dir/F2-3.pdf
https://github.com/mocobeta/janome
https://github.com/mocobeta/janome
https://doi.org/10.1007/978-3-642-45135-5--2
https://doi.org/10.1007/978-3-642-45135-5--2
https://doi.org/10.1007/978-3-319-30671-1-60
https://doi.org/10.1007/978-3-319-30671-1-60
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.1109/LA-CCI.2017.8285711
https://doi.org/10.1109/LA-CCI.2017.8285711
https://doi.org/10.1109/TII.2018.2867174
https://doi.org/10.1109/ICIIECS.2017.8276182
https://doi.org/10.1007/978-3-030-16145-3-29
https://doi.org/10.1109/FUZZ-IEEE.2018.8491543
https://doi.org/10.1109/FUZZ-IEEE.2018.8491543
https://doi.org/10.1016/j.procs.2020.03.284
https://doi.org/10.1016/j.procs.2020.03.284
https://doi.org/10.1007/978-981-13-0586-3-15
https://doi.org/10.1007/s10586-017-1576-y

	Solving distribution problems in content-based...
	Abstract
	Introduction
	Overview
	Challenging issues
	Our contributions
	Roadmap

	Related works
	Preliminary knowledge
	Popular similarities
	Gaussian Mixture Model (GMM)

	Real dataset for our proposed method
	Proposed content-based recommendation system
	Proposed model
	Detailed algorithm
	Applicable to real-life applications

	Experiments
	Experimental environment
	Experimental analysis
	Experimental results and comparison

	Conclusion and future work
	References

